如图AD是三角形BAC的平分线DE垂直AB交AB的延长线于点EDF垂直AC于点F
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:09:04
【AB∶AC=BD∶CD】证明:作CE//AB,交AD延长线于E∴∠BAD=∠E,∠B=∠ECD∴△ABD∽△ECD(AA)∴AB∶EC=BD∶CD∵AD平分∠BAC∴∠BAD=∠CAD∴∠E=∠CA
∵AB=AC∴∠B=∠C∵AD是角BAC的外角的平分线∴∠CAD=½×﹙∠BAC的外角﹚∵∠BAC的外角=∠B+∠C∴∠CAD=∠C∴AD∥BC
题中:求证AC-AB>PG-PBPG应为PC在AC上作AE=AB,连PE.△ABP≌△AEP(SAS);PE=PB.AC-AB=AC-AE=EC>PC-PE=PC-PBAC-AB>PC-PB
⑴∵EF垂直平分AD,∴EA=ED,∴∠EAD=∠EDA.⑵∵EF垂直平分AD,∴FA=FD,∴∠FAD=∠FDA,∵AD平分∠BCA,∴∠FAD=∠DAC,∴∠FDA=∠CAD,∴DF∥AC,⑶∵∠
1∠BAC=2∠BAD∠BAF=2∠BAE∠BAC+∠BAF=2(∠BAD+∠BAE)=2∠DAE∠DAE=90所以DA⊥AE2AB=AC所以∠C=∠CBA,∠C+∠CBA=∠BAF∠C=∠EAFBC
∠FCA=∠FDA+∠CAD=∠FAD+∠BAD=∠BAF
做∠AFC平分线FG∵AD,CE为△ABC平分线∴∠BAD=∠CAD,∠ACE=∠BCE∴∠FAC+∠FCA=(1/2)(∠BAC+∠BCA)=60°∴∠AFC=120°∴∠AFE=∠CFD=180°
(2)FE与FD之间的数量关系为FE=FD,证明如下:过点F分别作FG⊥AB于点G,FH⊥BC于点H,∵∠B=60°,且AD,CE分别是∠BAC,∠BCA的平分线,∴FG=FH,∠2+∠3=60°,∴
/等等再答:
∵DE⊥AB,DF⊥AC∴∠AED=∠AFD=90°∵AD是角BAC的平分线∴∠DAE=∠DAF∵AD=AD∴△ADE≌△ADF∴AE=AFDE=DF∴点A和点D在EF的垂直平分线上∴AD是EF的垂直
延长BP交AC于点F,∵AD为∠BAC的平分线,∴∠BAP=∠FAP,∵BP⊥AD于D,∴∠APB=∠APF=90°,在△APB和△APF中,∵∠BAP=∠FAPAP=AP∠APB=∠APF=90°,
取AB的中点E,因为AB=2AC所以AE=ACAD=AD又因为AD平分BAC所以三角形ACD和三角形ADE全等因为AD=BD,E是AB的中点所以DE是等腰三角形ADB底边AB上的高,即DE垂直AB,所
在AB上作点E,使得AE=AC,连PE则三角形AEP全等于三角形ACP所以PC=PE在三角形PEB中,由三角形性质得PB-PE小于BEBE=AB-AE=AB-AC所以AB-AC>PB-PE即AB-AC
这样的问题不算难吧,不应该做不出啊,你们这些小朋友上课要好好听讲啊!角平分线定理知道吧,DE=DF,AED和AFD两个三角形全等也行,勾股定理也行,可得AE=AF,再证明三角形AEO和AFO全等(设A
∵∠BAC=180°-∠B-∠C=68°,AE平分∠BAC,∴∠CAE=1/2∠BAC=34°,在ΔACE中,∠AEC=180°-∠CAE-∠C=76°.在RTΔACD中,∠CAD=90°-∠C=20
证明:作DG垂直于AB于G,DH垂直于BC于H,DK垂直于AC于K,因为BD是角EBC的平分线,DG垂直于AB于G,DH垂直天BC于H所以DG=DH(角平分线上的任意一点,到这个角的两边的距离相等),
证明:连接BF,连接F作FG垂直AB于G,FM垂直BC于M,FN垂直AC于N所以角FGE=角FMD=90度角FGA=角FNA=90度角FNC=角DMC=90度因为AD,CE平分角BAC,角ACB所以F
∵AD为角平分线∴DE=DF,∵DE、DF为高、AD=AD∴△ADE≌△ADF(HL)∴AE=AF∴∠AFE=∠AFE又∵∠DEF=20°∴∠AEF=70°∴∠EAF=40°