如图ab是圆o的直径三角形acd
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:07:38
的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°
【全等】证明:∵AB=CD∴∠ACB=∠DBC【同圆内相等弦所对的圆周角相等】又∵∠BAC=∠CDB【同弦(或同弧)所对的圆周角相等】∴⊿ABC≌⊿DCB(AAS)
证明圆的切线的方法:⑴、圆心到直线的距离等于半径;⑵、过半径外端且垂直于半径.此题可用第二种方法解决,即:证明DE⊥OD.证法如下:连结OD,所以AD⊥BC,由于AB=AC,利用等腰三角形的“三线合一
1、连接OD∵AB=ACOB=OD∴∠B=∠C∠B=∠ODB∴∠C=∠ODB∴OD∥AC∵DE⊥AC∴DE⊥OD∴DE是⊙O的切线.2、∵AD是⊙O的直径∴∠ACD=90°∴∠DAC+∠D=90°∵∠
证明:因为AE是圆O的直径所以角ABE=90度因为AD是三角形ABC的高所以角ADC=90度所以角ABE=角ADC=90度因为角AEB=角ACD=1/2弧AB所以三角形ABE和三角形ADC相似(AA)
OD‖BC →△AOD∽△ABC →OD/BC=AO/AB=1:2 &nb
证明:①∵弧AC=弧CD∴∠AOC=∠COD=60°(等弧对等角)∵OA=OC∴△AOC是等边三角形(有一个角是60°的等腰三角形是等边三角形)②∵△AOC是等边三角形∴∠AOC=60°∵∠AOD=∠
(1)求证:DE⊥ACBC为直径,∠CDB=90°;∠CDA=∠CDB=90°;CA=CB,∠A=∠B,所以∠ACD=∠BCD,∠B=∠CDE,[弧DC所对圆周角=弧DC所对圆切角]∠CDE+∠ACD
解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.
1)连AE,因为AB为直径所以∠AEB=90因为AB=AC所以∠BAE=∠CAE=(1/2)∠BAC(三线合一)因为∠CBF=(1/2)∠BAC所以∠CBF=∠BAE因为∠BAE∠ABE=90所以∠A
﹙1﹚∠A=50°∠B=90°50=40°∠ODB=∠B=40°∴∠BOD=180°-40°×2=100°﹙2﹚连接BD∵AB是⊙O的直径,点E在⊙O上,∴∠AEB=90°∵D、F分别是BC和CE的中
1)AB为直径则∠ACB=90°(直径对直角)2)CD垂直于AB于D即AB垂直于AG于D由垂径定理知弧AG=弧AC所对的角∠ACE=∠AFC△AFC中AC=CF则∠AFC=∠CAF=∠CAE所以∠AC
小乖的考拉:第(1)题中,是不是求∠ADB的度数啊?
连接OD,∵AD是⊙O的切线,∴OD⊥AC,过O作OE⊥AB,垂足为E,又AC=AB,∴∠∠C=∠B,点O是BC的中点,∴OC=OB,∴⊿OCD≌⊿OBE﹙AAS﹚,∴OE=OD,又OE⊥AB,∴AB
证明:∵弧AC=弧CD∴∠AOC=∠COD=60°(等弧对等角)∵OA=OC∴△AOC是等边三角形(有一个角是60°的等腰三角形是等边三角形)
∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD
连接BC∠ACE=90°sinAEC=AC/AE∠AEC=∠ABCsinABC=CD/BC=sinAEC=AC/AECD/BC=AC/AEAC×BC=AE×CD
连接OD,因为EF是圆的切线,可知OD⊥EF△AOD为等腰三角形,∴∠2=∠3,AD平分∠CAO,可知∠1=∠2,得出∠1=∠3,内错角相等,可以得出AF∥OD,OD⊥EF,那么AF⊥EF.连接CB,
(1)连AD,取AE中点M,连DM.∵AB是直径,∴∠ADB=∠ADE=90°,∴△ADE是直角三角形,DM是斜边中线,∴AM=DM,由AO=DO,∴∠MAO=∠MDO=90°.∴CD⊥MD.∵AE是