如图AB=AD AC=AE 且∠BAD=∠CAE试说明△ABS≌△ADE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 14:17:34
我按照你的题目画了个,证明△AEC与△BDC相等就好了,由条件可得AC=BC,AE=BD,又AE⊥AB,所以∠CAE=90°-45°=45°=∠DBC,由两边夹角得出△AEC=△BDC所以∠ACE=∠
证明:∵BD⊥AE,CE⊥AE∴∠ADB=∠AEC=90∴∠BAE+∠ABD=90∵∠BAC=90∴∠BAE+∠CAE=90∴∠ABD=∠CAE∵AB=AC∴△ABD≌△CAE(AAS)∴BD=AE,
(1)△ABD与△CAE全等,在Rt△ABD与Rt△CAE中,∵AB=AC ,∠ABD=∠CAE,∠BDA=∠AEC=Rt∠,∴△ABD≌△CAE(AAS), (2)BD=DE+C
角FAD+AFB=90,CFE+DCB=90CFE和AFB对角所以相等,FAD=DCB,还有个垂直,和已知的边相等,所以全等
∠D公共角⊿AED∽⊿CBD,∠A=∠C在⊿ABF与⊿CBD中∠A=∠C∠ABF=∠CBDAB=CB∴⊿ABF≌⊿CBD
证明:∵AE=BF,∴AE+EF=BF+EF,即AF=BE,在△ADF和△BCE中,AD=BC∠A=∠BAF=BE,∴△ADF≌△BCE(SAS),∴∠D=∠C.
(1)证明:∵∠BAD+∠DAC=90º∠ECA+∠CAD=90º∴∠BAD=∠ACE又∵∠ADB=∠AEC=90º,AB=AC∴⊿BAD≌⊿ACE∴BD=AE,AD=C
(1)角CAE=180度-角BAC-角BAD=90度-角BAD=角DBA角BAD=角ACEAB=AC三角形DAB全等于三角形AECCE=AD,BD=AE所以:BD+CE=AE+AD=DE(2)仍然存在
证明:(1)∵AB=DF,BF是公共边∴AF=BD又∵AE∥BC∴∠EAF=∠CBD在△AEF和△CBD中AE=BC∠EAF=∠CBDAF=BD∴△AEF≌△CBD(SAS)(2)∵△AEF≌△CBD
如图(1),已知△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在A、E的异侧,BD⊥AE于D,CE⊥AE于E.(1)求证:BD=AE.(2)猜想:BD与DE、CE之间的关系,
∵BF=DE∴BF-EF=DE-EF即DF=BE∵AE∥CF∴∠CFB=∠AED(内错角相等)∵∠CFD+∠CFB=180°∠AEB+∠AED=180°∴∠CFD=∠AEB∵AE=CF∴△ABE≌△C
延长AE到P,使得AE=EP,∵DE=CE,∠AEC=∠PED,∴△ACE≌△PDE.(S,A,S)∴AC=PD=DF,∴∠P=∠DFP,又∠P=∠CAE,∴∠DFP=∠CAE,又∠CAE=∠BAE,
延长AE至F,使AE=EF,则AF=2AE∵AD+AB=2AE∴AF=AD+AB而AF=AB+BF∴BF=AD(1)∵AE=EF,CE⊥AF,CE=CE所以Rt△AEC≌Rt△FEC所以∠F=∠EAC
证明:△ABD和△ACE中,AB=AC,AD=AE,BD=CE,故△ABD≌△ACE(SSS)∴∠ABD=∠ACE=∠2,∠BAD=∠CAE=∠1∠3为△ABD外角,则∠3=∠1+∠2
∵AB=AC∴∠ACB=∠ABC=∠AEB又∠BAE公共.所以△ABD和△AEB相似即AB/AD=AE/AB即AB²=AD·AE
证明:∵△ABC为正三角形,∴∠A=∠C=60°,BC=AB,∵AE=BE,∴CB=2AE,∵ADAC=13,∴CD=2AD,∴ADCB=AECB=12,而∠A=∠C,∴△AED∽△CBD.
小朋友,在全等三角形中,掌握好这类基本图形就可以轻松解答了.∵CB⊥AD,AE⊥CD∴∠ABF=∠CBD=∠CEA=90°∵∠AFB=∠CFE∴∠A+∠ABF=∠C+∠CEA∠A=∠C在△ABF和△C
(1)证明:∵∠ACB=90°,AC=BC,∴∠B=∠2=45°.∵AE⊥AB,∴∠1+∠2=90°.∴∠1=45°.∴∠1=∠B.在△ACE和△BCD中,∵AE=BD∠1=∠BAC=BC∴△ACE≌
AB=DC==>AC=BD,又因为AE=DF,CE=BF==>所以三角形ACE全等于三角形BDF(边边边),所以角EAD=角ADF,内错角相等两直线平行
(1)Rt△ADE≌Rt△BEC,∵∠1=∠2,∴DE=EC,在Rt△ADE和Rt△BEC中ED=ECAE=CB,∴Rt△ADE≌Rt△BEC(HL);(2)证明:∵Rt△ADE≌Rt△BEC,∴AD