如图AB.AC是元O的弦,过B作元O的切线交AC延长线于D.E是AC弧中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:10:12
如图AB.AC是元O的弦,过B作元O的切线交AC延长线于D.E是AC弧中点
如图AE是圆O直径D是圆O一点连接AD并延长使AD=DC,连接CE交圆O于点B,连接AB,过点E的直线与AC的延长线

证明(1):∵AD=DC,DE=DE,∠ADE=∠CDE=90度,∴△ADE≌△CDE(SAS),∴AE=CE.∴∠2=∠3,∴∠F=∠2=∠3.又∵∠2+∠3+∠4=90=∠1+∠2+∠F,∴∠1=

如图 BD是直径 过点O上一点A作点O切线交DB延长线于P 过B点作BC平行PA交点O于C 连接AB AC求证AB=AC

证明:∵PA是圆O的切线∴∠PAB=∠C∵PA‖BC∴∠PAB=∠ABC∴∠ABC=∠C∴AB=AC

如图,AB,AC是圆O的两条弦且AB=AC,M,N分别是AB,AC的中点,弦PQ过M,N两点,求证PM=NQ

证明:因为AB=AC,所以三角形ABC是等腰三角形因为MN是三角形ABC的中位线所以∠AMN=∠ANM,BM=CQ即∠BMP=∠CNQ因为弦AB=弦AC所以∠PBA=∠QCA所以三角形PBM全等三角形

如图,AB是圆O的直径,弦CD⊥AB于P,已知CD=8,∠B=30°,求元O的直径

连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30

如图,AB是⊙O的直径,C是⊙O上一点,过圆心O作OD⊥AC,D为垂足,E是BC上一点,G是DE的中点,OG的延长线交B

(1)结论:OD∥BC,证明:∵AB是⊙O直径,C是⊙O上一点,∴∠ACB=90°.即BC⊥AC.∵OD⊥AC,∴OD∥BC.(2)结论:EF=BE+FC,证明:∵OD⊥AC,∴AD=DC.∵O为AB

如图,AB是⊙O的直径,弦CD⊥AB于点E,过点B作⊙O的切线,交AC的延长线于点F.已知OA=3,AE=2,

(1)如图,连接OC,∵AB是直径,弦CD⊥AB,∴CE=DE在直角△OCE中,OC2=OE2+CE232=(3-2)2+CE2得:CE=22,∴CD=42.(2)∵BF切⊙O于点B,∴∠ABF=90

如图,AB是圆O的直径,射线BM垂直AB,垂足为B,点C为射线BM上的一个动点(C与B不重合),连结AC交圆O于D,过D

我只是想问一下“过D做圆O的切线交BC于E”这句话有什么用?你只要算出线段BC长度不大于2倍的线段DC就可以了.

如图,AC是圆O的直径,AC=10厘米,PA,PB是圆O的切线,A,B为切点,过A作AD⊥BP,交BP于D点,连接AB,

证明:(1)∵AC是圆O的直径∴∠ABC=90°∵AD⊥BP∴∠ADB=90°∴∠ABC=∠ADB∵PB是圆的切线∴∠ABD=∠ACB在△ABC和△ADB中:∵∠ABC=∠ADB,∠ABD=∠ACB∴

如图,AC是圆O的直径,AC=10厘米,PA,PB是圆O的切线,A,B为切点.过A作AD⊥BP,交BP于D点,连结AB,

∵AC是直径∴∠ABC=90°∵AD⊥BP∴∠ADB=90°∴∠ABC=∠ADB∵PB是圆的切线∴∠ABD=∠ACB△ABC和△ADB中:∵∠ABC=∠ADB,∠ABD=∠ACB∴△ABC∽△ADB.

(2012•阜宁县三模)如图,AB是半圆O的直径,点C是⊙O上一点(不与A,B重合),连接AC,BC,过点O作OD∥AC

(1)BE与⊙O的相切,理由是:∵AB是半圆O的直径,∴∠ACB=90°∵OD∥AC,∴∠ODB=∠ACB=90°,∴∠BOD+∠ABC=90°,又∵∠OEB=∠ABC,∴∠BOD+∠OEB=90°,

已知:如图,AB是圆O的直径,AC是弦.过点A作∠BAC的角平分线,交圆O于点D,过点D做AC的垂线,交AC的延长线于点

1.连接OD,OA=OD,则∠DAO=∠ADO,AD为角平分线,有∠CAD=∠DAO,则∠CAD=∠ADO,所以AC//OD,又DE⊥AC,则∠CAD+∠ADE=90,∠ADE+∠ADO=90,所以O

如图,ab是圆o的直径,ac是现,od垂直于ac于点d,过点a作圆o的切线ap,ap于od的延长线角于点p,连接pc,b

解题思路:(1)先证OD是△ABC的中位线,即可。(2)连接OC,设OP与圆交于点E,证OC⊥PC即可。解题过程:

(2014•萧山区模拟)如图,点B是半径为6的⊙O上一点,过点B作一个30°的圆周角∠ABC,则由弦AB、BC和AC

∵∠AOC=2∠ABC=60°,又∵OA=OB,∴△AOC是等边三角形,则OD=32OA=33,BD=6+33,∴S△ABC=12AC•BD=12×6×(6+33)=3(6+33)=18+93,S△A

如图,AB是○O的直径,弦CD//AB 连AD 并延长与过B点的切线交于E,作EG垂直于AC于G,求证AC=CG.谢谢了

连接BC交AD于F,角ACB为直角,BC平行于EG,所以只需证明F是AE的中点.因为CD是平行于AB的弦,所以角ABC=角BAD,所以AF=BF,又因为角FBE=角FEB,所以BF=EF.

如图,AB是○O的直径,弦CD//AB 连AD 并延长与过B点的切线交于E,作EG垂直于AC于G,求证AC=CG.

连接BC交AD于F,角ACB为直角,BC平行于EG,所以只需证明F是AE的中点.因为CD是平行于AB的弦,所以角ABC=角BAD,所以AF=BF,又因为角FBE=角FEB,所以BF=EF.

如图,AB是⊙O的直径,AD与⊙O相切于点A,过B点作BC∥OD交⊙O于点C,连接OC、AC,AC交OD于点E.

(1)证明:∵AB为⊙O的直径,∴∠BCA=90°,又∵BC∥OD,∴OE⊥AC,即:∠OEC=∠BCA=90°.(2分)又∵OA=OC,∴∠BAC=∠OCE,(3分)∴△COE∽△ABC;(4分)(

(2011•咸宁)如图,AB是⊙O的直径,过B点作⊙O的切线,交弦AE的延长线于点C,作OD⊥AC,垂足为D,若∠ACB

∵BC是⊙O的切线,∴AB⊥BC.在Rt△ABC中,∵ABBC=tan60°,∴AB=BC×tan60°=23.∴AO=12AB=3.∵OD⊥AC,∴∠ADO=90°,∴△AOD是直角三角形,在Rt△