如图:在△ABC和△ADE均为等腰直角三角形,∠CAB=∠EAD=90°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:31:57
(1)证明:∵△ABC和△ADE均为等边三角形,∴AE=AD、AB=AC,又∵∠EAD=∠BAC=60°,∠EAD+∠DAC=∠BAC+∠DAC,即∠DAB=∠EAC,在△EAC和△DAB中,AE=A
(1)证明:延长DM交BC于N,∵∠EDA=∠ABC=90°,∴DE∥BC,∴∠DEM=∠MCB,在△EMD和△CMN中∠DEM=∠NCMEM=CM∠EMD=∠NMC,∴△EMD≌△CMN,∴CN=D
(1)△ABC∽△ADE,△ABD∽△ACE(2分)(2)①证△ABC∽△ADE,∵∠BAD=∠CAE,∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.(4分)又∵∠ABC=∠ADE,∴
△ABD∽△ACE你已经证明△ABC∽△ADE那么得AB/AC=AD/AE∠BAD=∠CAE△ABD∽△ACE(边角边)
1)证明:∵三角形ABC,ADE为等边三角形,∴∠CAB=∠DAE=60,∴∠CAB+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,∵AB=AC,AD=AE∴△BAD≌△CAE(SAS)∴BD=
(1)证明:∵点M是Rt△BEC的斜边EC的中点,∴BM=12EC=MC,∴∠MBC=∠MCB.∴∠BME=2∠BCM.(2分)同理可证:DM=12EC=MC,∠EMD=2∠MCD.∴∠BMD=2∠B
根据您的问题,我做出如下回答:因为:∠BAD=∠CAE所以:∠BAD+∠DAC=∠CAE+∠DAC即:∠ABC=∠DAE又因为:∠ABC=∠ADE所以相似.
因为ΔABC和ΔADE为等边三角形所以AB=ACAD=AE∠BAE=∠CAD=60°所以△ABE≌△ACD(SAS)所以BE=CD第二个因为△ABD和△ACE为等边△所以AB=ADAE=AC∠ADB=
过c点做AB平行线,与ED延长线交于F点,连接EC.△ADE与△DCF全等ED=DFS△ADE=S△DCF=9,又EF=2DF,S△ECF=9*2=18AB//CFAE:BE=3:2CF:BE=3;2
证明:(1)∵△ABC、△ADE是等边三角形,∴AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠DAE+∠CAD,即:∠BAD=∠CAE,∴△BAD≌△CAE,∴BD
这个图看上有中3D感觉,其实这是2D平面图.1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAE=∠DAE+∠CAE即∠BAE=∠CAD,又AB=AC,AD=AE,∴△BAE≌△CAD(SAS)
∵DE∥BC,EF∥AB∴∠C=∠AED,∠FEC=∠A(4分)∴△EFC∽△ADE(5分)而S△ADE=4,S△EFC=9∴(ECAE)2=94(6分)∴ECAE=32∴ECAC=35(8分)∴S△
相似因为∠BAD=∠CAE,所以∠BAC=∠DAE又因为∠ABC=∠ADE所以△ABC∽△ADE所以AD/AE=AB/AC在△ABD和△ACE中AD/AE=AB/AC,∠BAD=∠CAE所以△ABD∽
﹙1﹚∵ad=aeac=ab∠bac=∠dae=90°∴△abd≌△ace﹙sas﹚﹙2﹚∵abd≌△ace∴ce=bd∠dba=∠ace∵M,N分别是BD,CE的中点∴bm=cn∵bm=cn∠dba
(1)ΔABE和ΔADC证明:对于ΔABE和ΔADC,AB=AC,AD=AE,且∠BAE=∠CAD=∠CAE+90°∴ΔABE全等于ΔADC(2)采用(1)中的结果,设DC和AC交于H点.由于ΔABE
∠EAD=∠1+∠EAB,∠BAC=∠2+∠EAB因为∠1=∠2,所以∠EAD=∠BAC又∠E=∠B,AC=AD角角边全等定理△ABC≌△ADE
(1)∵∠BAD=∠CAE,∠DAC=∠DAC.∴∠BAC=∠DAE,又∵∠ABC=∠ADE.∴△ABC∽△ADE,(AA)∴AB:AC=AD:AE°∵∠BAD=∠CAE∴△ABD∽ACE(SAS)(