如图8 在三角形abc中,cf垂直ab于f
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:36:11
∵BE∥CF,∴∠GBE=∠DCF,∠E=∠DEC,∵BE=CF,∴ΔDBE≌ΔDCF,∴BD=CD,∴AD中ΔABC的中线.
EF=0.5BD,因为已经的那两个条件,可以得出三角形ACF与三角形DCF全等.那么AF=FD,又因为AE=EB,所以EF是三角形ABD的中位线,所以EF=0.5BD.没学过中位线用三角形相似也可以得
过C做AB的平行线与ED的延长线交与M连接FMBD=CD∠B=∠DCM∠BDE=∠CDMA△BDE≌△CDMBE=CM、ED=DMDE⊥DF∠EDF=∠FDM=90°FD=DF△EDF≌△FDMEF=
过C做AB的平行线与ED的延长线交与M连接FMBD=CD∠B=∠DCM∠BDE=∠CDMA△BDE≌△CDMBE=CM、ED=DMDE⊥DF∠EDF=∠FDM=90°FD=DF△EDF≌△FDMEF=
过C做AB的平行线与ED的延长线交与M连接FMBD=CD∠B=∠DCM∠BDE=∠CDMA△BDE≌△CDMBE=CM、ED=DMDE⊥DF∠EDF=∠FDM=90°FD=DF△EDF≌△FDMEF=
过点B做AC的平行线交FD延长线于点GBG平行AC,有:角GBD=角FCD----(1)BD=CD----(2)角GDB=角FDC(对顶角)---(3)由(1)(2)(3)角边角得到:三角形GBD和三
证明:∵AB=AC,D是BC的中点∴AD⊥BC【等腰三角形三线合一】作EM⊥AD于M则EM//BD∴AE/AB=EM/BD同理:作FN⊥BC于N则EN//AD∴FN/AD=FC/AC∵AB=AC,AE
分析:(1)由于BE⊥AC,CF⊥AB,可得∠ABE=∠ACF,又有对应边的关系,进而得出△ABP≌△QCA,即可得出结论.(2)在(1)的基础上,证明∠PAQ=90°即可.证明:(1)∵BE⊥AC,
分析若延长AG,设延长线交BC于M.由角平分线的对称性可以证明△ABG≌△MBG,从而G是AM的中点;同样,延长AH交BC于N,H是AN的中点,从而GH就是△AMN的中位线,所以GH‖BC,进而,利用
证明:在FD的延长线上取点G,使FD=GD,连接BG、EG∵D是BC的中点,∴BD=CD,∵FD=GD,∠FDC=∠BDG∴△FDC≌△BDG(SAS)∴BG=CF,∵在△BGE中BE+BG>EG,∴
AB=ACBAD=DAC△ADE,△ADFBAD=CADAD=ADAED=AFD△ADE全等,△ADFAF=AEBE=CF
∵BE∥CF∴∠E=∠CFD,∠EBD=∠FCD∵BE=CF∴△BDE≌△CDF(ASA)∴BD=DC∴AD是△ABC的BC边上的中线
1CA乘CE与CB乘CF相等根据射影定理CA乘CE=CD^2=CB乘CF2DE垂直AC,DF垂直BCDCEF四点共圆OC*OD=OE*OF
证明△AGC和△ADB全等.(1)△CFA和△ABE有2个公共角(∠BAC和∠CAB,∠AFC和∠AEB),所以∠ABE=∠ACG.又因为BD=AC,CG=AB.△AGC和△ADB全等(SAS).所以
等于由题可知:∠BAD+∠CAD+∠EAG+∠ABG=90°因为2(∠ABG+∠BAD+∠ACF)=180°所以∠BAD+∠CAD+∠EAG+∠ABG=∠BAD+∠ACF+∠ABG即∠CAD+∠EAG
∵BE∥CF∴∠E=∠CFD,∠EBD=∠FCD∵BE=CF∴△BDE≌△CDF(ASA)∴BD=DC∴AD是△ABC的BC边上的中线再问:可是我证明了两次再问:我证明完三角形BDC全等于三角形FPC
三条中线将三角形分成六个面积相等的小三角形.证明:三角形BOD的底是BD,高是O到BC的距离;三角形COD的底是CD,高是O到BC的距离BD=CDBOD=COD同理:AOE=COEAOF=BOF三角形
因为同一个三角形,不同底和对应的高的乘积都相等(如果再除以2的话也可以理解为面积相等,不过在这里不需要多做这一步),所以可以算出AB和AC的长,计算方法如下:AC=BC*AD/BE=(16*3)/4=
等一下再答: 再答:字渣见谅再答:在吗?急求财富值。。。。。。。。。。再问:那个求证的方框上面那句话是啥啊再答:在三角形abe与三角形acf中