如图3-5-23,圆心o是三角形ABC的外接圆,直径AD=4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:19:55
连结OP∴∠OCP=∠OPC=∠DCP∴OP//CD∵CD⊥AB∴OP⊥AB∴∴P是弧AB中点
因为,DC切圆心O于点C,所以OC垂直DC,又AD垂直DC.所以OC平行于AD.根据平行线的性质,所以∠BAD=∠BOC.又根据圆周角定理:同弧所对圆周角是圆心角的一半.所以2∠CAB=∠BOC=∠B
连结AD,角Dcb等于角DAB,同炫对应角相等,AB直径,ADB直角,ADB直角三角形,A=30度,2DB=AB.所以DB=半径.你忘了写半径吧?有个叫可爱亿如的问题和你一样,你们同班吗?
连接BD,则∠BD=90°(半圆上的圆周角是直角)又:BC切圆于B,∴∠ABC=90°∴BD是直角三角形ABC斜边上的高∴BD^2=AD*DC=3*2=6AB^2=AD^2+BD^2=3^2+6=15
两个错误:1,“三角形ABC的三个顶点都在圆心O上”应说“……都在圆O上”.2,“高AD交圆心O于F,”应说“……交圆O于F,”.证明:连结EF,AE是直径,角AFE是直角,又因AD垂直于BC,所以B
证明:∵AE是△ABC的外接圆直径,∴∠ABE=90°.∴∠1+∠E=90°.∵AD是△ABC的高,∴∠ADC=90°.∴∠2+∠ACB=90°.∵∠E=∠ACB,∴∠1=∠2.
圆的面积:3.14×9×2=56.52平方分米
∠ACD=120°∠OCD=90°△ABC为直角三角形AB为直径∠ACB=90°∠ACO=∠ACD-∠ACB=30°∠BCD=30°∠CAB=∠ACO=30°∠D=180°-∠CAD-∠DCA=180
解题思路:利用切线的判定求证。解题过程:最终答案:略
DF=5,AE=3,设CD与圆的另一个交点为M说明直径比FM多4,半径为r,过O做ON⊥CD,连接OF,OF=r,NF=r-2ON=AD=4r²=16+(r-2)²r=5,直径=1
∵PA、PB切圆O于A、B∴PB=PA=5∵CD切圆O于E∴DA=DE,BC=CE∴△PCD的周长=PC+CD+PD=PC+CE+DE+PD=PC+BC+DA+PD=PB+PA=10
解题思路:(1)连接OD、BD,根据圆周角定理得到∠BDC=90°,则E为Rt△ABD的斜边AB的中点,根据直角三角形斜边上的中线性质得到DE=BE=1/2AB,则∠EBD=∠EDB,由于∠EBD+∠
--楼主……我记得没错的话……有条定理还是公理就是……过圆心的直径是圆上任意两点间最长的线段要证明的话……如下过C点做直径CE,连接DE,我们可得RT△CDE,由RT三角形斜边最长……我们可知AB=C
是求PB的最小值么?分析:因为PB为切线,所以△OPB是Rt△.因为OB为定值,所以当OP最小时,PB最小.根据垂线段最短,知OP′=3时P′B′最小.运用勾股定理求解即可.作OP′⊥l于P′点,则O
设正方形的边长为1,OD=x则有OC=1-x,OB=1+x三角形OBC中,由勾股定理有 OB^2=OC^2+BC^2所以 (1+x)^2=(1-x)^2+1^2得x=1/4所以OC
(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠DAE=∠BCK,∵BK⊥AC,DH∥KB,∴∠BKC=∠AED=90°,∴△BKC≌△ADE,∴AE=CK;(2)∵AB=a,AD=
证明:连接OA,OB,OP. 点B在圆心O上,且PA=PB;  
(1)BC所在直线与小圆相切过O作OF⊥BC在直角△ACO和直角△OCF中,∠AC0=∠FCO,∴AO=FO又AO为半径,所以F在小圆上,所以直线BC外切于小圆(2)关系:BC=AD+AC在直角△AC