如图2-9,在△ABC中,角BAC=120°,若DE,FG分别
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:16:56
/>在BC在作点E,使CE=AC,连接DECD是△ABC的角平分线∠ACD=∠ECDAC=CE,CD=CD所以,三角形ACD与三角形ECD全等AD=DE;∠A=∠CEDBC=AC+AD=BE+CE=A
过B作∠B的角平分线交AC于D∠CDB=∠B△CAB∽△CBDCB/CA=CD/CBCB²=CA×CD角平分线分线段成比例定理AD/DC=AB/BCAC/DC=(AB+BC)/BCDC=AC
解;因为三角形的外角等于不相邻的两个内角之和,所以设∠ACB的外角为∠ACE,∠ACE=∠ABC+∠BAC.又因为BD平分∠ABC,所以∠DBC=1/2∠ABC同理:∠ACD=1/2∠ACE=1/2(
延长AC至E,使CE=CD,连DE则:∠E=∠CDE,而∠ACB=∠E+∠CDE所以,∠E=∠ACD/2=∠B又因为角1=角2,AD=AD所以,△ABD≌△AEDAB=AE而AE=AC+CE=AC+C
延长CA,取点E使AE=AD,连接DE.则∠ADE=∠AED因为∠CDA=∠ADE+∠AED=2∠B所以∠B=∠AED因为∠BCD=∠ACD所以∠CDB=∠CDE又因有公共边CD所以△BCD△CED全
∠CBD+∠C=∠ADB∠CBD=2∠C=2∠CBD又因为∠A=∠A所以▲ADB≌▲ABC所以AD:AB=AB:CD=BD:BC
在菱形ABCD中AB=BC,AD∥BC∴∠BAD+∠B=180°∵∠BAD=2∠B∴∠B=180°÷(1+2)=60°∴△ABC是等边三角形
延长AC到E使得CE=CD,连接DE,用三角形全等
延长CB至D,使BD=BA,连接AD∵BA=BD∴∠D=∠BAD∵∠ABC=∠BAD+∠D=2∠D,∠ABC=2∠C∴∠D=∠C∴AD=AC∵AB+BD>AC(三角形两边之和大于第三边)∴2AB>AC
证明:∵AD是△ABC的角平分线,∴∠BAD=∠EAD,∵∠B=2∠C,∠AED=2∠C,∴∠B=∠AED,在△ABD和△AED中,∠BAD=∠EAD∠B=∠AEDAD=AD,∴△ABD≌△AED(A
证明:在BC上取CE=AC,连接DE因为CD是角平分线所以∠ACD=∠ECD又因为CD=CD所以△CAD≌△CED(SAS)所以AD=DE,∠A=∠CED因为∠A=2∠B所以∠CED=2∠B因为∠CE
结合图像自己对照证明:在BC上取点E,使CA=CE所以△ACD全等于△ECD(SAS)所以:角A=角CED因为:∠A=2∠B所以:∠CED=2∠B又因为:∠CED=∠B+∠BDE所以:∠B=∠BDE所
证明:在BC上取一点E,使得CE=AC因为CD=CD,角ACD=角DCE所以三角形ACD全等于三角形ECD所以AD=DE,角A=角DEC因为角DEC=角B+角BDE,角A=2角B所以角B=角BDE所以
解题思路:可设P、Q两点运动t秒时,PQ有最小值,则PB=6-t,BQ=2t,根据勾股定理可求解题过程:解:设P、Q两点运动t秒时,PQ有最小值,最终答案:略
(1)以DE为对称轴,把△ADE翻折至△A'DE,连A'F.A'D=AD=BD,∠A'DE=∠ADE,∠C=∠EDF=90°,∴∠A'DF=90°-∠A'DE=90°-∠ADE=∠BDF,DF=DF,
在AC上取一点E,使AE=AB,就可以证明ABD和AED全等.所以BD=ED,根据AC=AB+BD所以ED=EC,所以可以得到三角形EDC那两个底角相等,再根据外角的关系就可以得到了再问:点E是否要与
1.在BC上取点E,使CE=CA证明△ACD≌△CDE=>AC=CE∠A=∠DEC=2∠B=>AD=DE=BEBC=BE+EC=AD+AC2.过A作BC垂线交BC于E,所以AE是垂直平分线证明△BCD
证明:∵∠1=∠B(已知),∴∠AED=2∠B(三角形外角的性质),DE=BE(等角对等边),又∠C=2∠B,∴∠C=∠AED(等量代换),在△ACD和△AED中,∠CAD=∠EAD∠C=∠AEDAD
△BDE与△CEF全等
很简单啊BD的垂直平分线交AB于M,BD于N因为MN垂直平分BD所以MB=MD∠B=∠MDB(三线合一)∠AMD=∠B+∠MDB因为角C=2角B所以∠C=∠AMD在△AMD与△ACD中∠C=∠AMD∠