如图2,AB是非直径的弦,角CAE=角B,求证
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:05:06
因为圆O中AB是直径,AC是弦,点B,C两点间的距离是2cm,所以∠ACB=90度,作OD⊥AC,交AC于D,∠ADO=90,则OC‖BC,所以∠ABC=∠AOD,∠ACB=90度=∠ADO,∠CAB
连接CO∵CD为⊥于直径的弦∴CE=DE∵∠C=30°∴∠A=60°∵OA=OC∴△ACO为等边三角形∴AC=AO=OD∵∠AEC=∠DEO=90°∴△ACE≌△ODE(HL)∴S△ACE=S△ODE
连结OP∴∠OCP=∠OPC=∠DCP∴OP//CD∵CD⊥AB∴OP⊥AB∴∴P是弧AB中点
∵DE是⊙O的直径∴AC=BC=1/2AB根据相交弦定理AC*BC=CE*CDCD=AC*BC/CE=3*3/1=9AB=CD+CE=9+1=10OC=1/2AB-CE=5-1=4有没办法证明DE与C
过O1作O1D⊥MN,过N作NE⊥AB,连接O1N,则S(O1CD)=1-π/4,O1E=√(2²-1²)=√3,∴S(矩形O1DNE)=√3,∵O1E=√3NE,∴∠NO1B=3
木分啊.[1].连接AC、OC、BC弧BC=弧CD,所以角DAC=角DAC,又因为角BAC=角OCA所以角DAC=角ACO,所以AD平行OC,所以角DAB=角COB三角形ADB与三角形OEC皆为直角三
证明:∵C是弧AD的中点∴弧AC=弧CD∴∠ABC=∠CBD(等弧对等角)∵AB是⊙O的直径∴∠ADB=90°则∠EFC=∠BFD=90°-∠CBD∵CM⊥AB∴∠CHB=90°则∠ECF=90°-∠
简单的说一下:如图,∠A=∠P=∠ACO=∠PCB=x,AC=PC所以:△AOC≌△PBC,得到OC=BC所以:△COB是等边三角形因此∠OCB=60°,所以:∠A=∠P=∠PCB=30°,∠PCO=
(1)∵MN是⊙O的直径,点A是弧MN的中点,∴∠AOM=14×360°=90°,∴∠ACO+∠CAO=90°,∵∠ACO=2∠CAO,∴3∠CAO=90°,解得∠CAO=30°;(2)过点O作OD⊥
连接OC.AB为直径,C为弧AB的中点,则:OC⊥AB,OC=AO=OB=3;BF=OB-OF=2.设BD=X,则DE=DF=2+X.DE为圆的切线,则:DE²=BD*AD,(2+X)
(1)证明:连接AC,则∠ACB=90°,易证∠BCF=∠BAC∵C是弧BD的中点∴弧BC=弧CD∴∠BAC=∠CBF∴∠CBF=∠BCF∴BF=CF(2)连接OC,交BD于点M∵C是弧BD的中点∴O
(1)∵∠ABC=∠CBEAB为直径∴∠ACB=∠BEC=90∴∠BAC=∠BCE∵OA=OC∴∠OAC=∠OCA∴∠OAC=∠BCE(2)113/8
解题思路:此题考查勾股定理在解题中的应用,利用面积差求三角形的面积解题过程:连接CF,则CF⊥AE∵BE⊥AE∴CF∥BE∴AF/AE=CF/BE=AC/AB设OC=r,则AB=4r∵AE=8∴AF=
(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&
解题思路:过B作弦BE,使BE=CD,连接AE,说明△AEB是直角三角形,由斜边大于直角边得出结论解题过程:证明:过B作弦BE,使BE=CD,连接AE∵AB是⊙O直径∴∠AEB=90°∵Rt△AEB中
因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=
1)弦MN以上部分的面积为扇形MO1N的面积—三角形MO1N的面积=4л/3-根号32)过点O1作MN的垂线,垂足为P则PNBO1的面积为л-(4л/3-根号3)/23)而PCO1的面积为1-л/44