如图1四边形abcd是正方形点g是bc上任意一点 AB=2A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:22:58
四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以菱形
黄金分割的定义:把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比.其比值是一个无理数,用分数表示为(√5-1)/2很显然,F点正是这个黄金分割点,根据定义就知道了.如果要证明的话
由AO=BO=CO=DO,AC⊥BD根据三角形全等,可得AB=CD,AD=BC,所以四边形ABCD是平行四边形(两组对边分别相等)又因为AC=BD,AC⊥BD,所以平行四边形ABCD是正方形(对角线垂
见图自明.你不会传图吗?我来帮你.① 打开桌面上的图标“画图”﹙双击﹚.即可以用鼠标与左边的工具画图,工具的使用都是一看就会的.② 图形完成之后.单击上排左侧的“文件”,单击出表中
“zyl9529”:答:DE=FG;BGEF的周长=4cm×2=8cm证明:延长FE交DC于H.AC是正方形ABCD的对角线,所以,AF=FE;;EG=EH;;EG⊥BC;;EF⊥AB;;所以FE=B
证明:因为四边形AEFC是菱形,所以AC=FC因为四边形ABCD是正方形,所以AC=DB,BO=BD/2所以FC=DB=2BOBO垂直OH,EH垂直OE,BE∥OH所以EH=BO所以EH=1/2FC
(1)证明:∵四边形ABCD是正方形,BE⊥BF∴AB=CB,∠ABC=∠EBF=90°(1分)∴∠ABC-∠EBC=∠EBF-∠EBC即∠ABE=∠CBF(2分)又BE=BF(3分)∴△ABE≌△C
证明:∵矩形的ABCD的外角都是直角,HE,EF都是外角平分线,∴∠BAE=∠ABE=45°.∴∠E=90°.同理,∠F=∠G=90°.∴四边形EFGH为矩形.∵AD=BC,∠HAD=∠HDA=∠FB
是扇形BEF的面积减去三角形BMF的面积π*2^2-(2/3)^2*1/2*2=4π-4/9再问:你能给我说明一下吗?三角形BMF的面积是怎么出来的?扇形的面积为什么不要乘以1/4?再答:不好意思忘记
1、延长BG交DE于M∵四边形ABCD和CEFG是正方形,∴∠BCD=∠DCE=90°BC=CDCE=CG∴△BCG≌△CDE∴∠GBC=∠CDE∵∠BGC=∠DGM(对顶角)∴△BCG∽△DGM∴∠
对照你的图形阅读下列内容:设AE=x,则BE=(6-X)BF=XS(EFGH)=EF²=X²+(6-X)²=2X²-12X+36这是一个开口向上的抛物线,当X=
四边形ABCD是正方形,E是DC上一点,△ADE旋转后能与三角形ABF重合.(1)旋转中心是哪一点?A点(2)旋转角是多少度?90度(3)如果连接EF,那么△AEF是怎样的三角形?直角等腰三角形请说明
小颖观点正确.同样方法取AB上点M,连接ME,使AM=EC,则MB=BE,则“ASA”,易证△AME≌△ECF,所以AE=EF小华的观点正确,在BA延长线上取一点M,使AM=EC,连接ME,则“ASA
楼主题目是不是错了应该是DG=BE吧.(1)证明如下四边形ABCD、AEFG都是正方形,所以DA=AB,AG=AE,
答:四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以
(1)如图甲,当点E在AB边的中点时:①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是(DE=EF);②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是(NE=BF)请证明你的上述两
如图,⑴ E.F是CD,DA的中点,A1D⊥D1D FD⊥D1D A1D,FD共面,∴A1D∥=FDA1D1DF是矩形,A1F∥=D1
(2010重庆市潼南县)如上图,四边形ABCD是边长为1 的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F→H方向平移至点B
F点是不是BC的黄金分割点?是的,因为BF比BC等于二分之根号五减一.
如图,过E作EI⊥CD于I则EI=1/2AD=1/2EC∴∠ECD=30°同理,∠FCB=30°∴∠ECF=30°∴弧EF=30°/180°*π*a=1/6aπ∴阴影部分周长为2/3aπ