如图16,d是等边三角形abc边ab上的一动点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 16:59:32
∵△ABD和△CBE中,∠ABD=∠CBE=60°,AB=CB,BD=BE∴△ABD≌△CBE∵△ABN和△CBM中,∠ABN=60°+60°=120°,∠CBM=180°-60°=120°=∠ABN
点D在BC中点时,四边形CDEF是平行四边形,且∠DEF=30°证明:∵设点D在BC中点∴AD是△ABC的中线∴AD平分∠BAC又∵△ABC是等边三角形∴∠BAD=∠CAD=1/2∠BAC=30°∵C
1)连AD,等边三角形ABC面积=4√3,等边三角形ABC面积=三角形ABD面积+三角形ACD面积=(1/2)AB*DE+(1/2)AC*DF=2DE+2DF=2√3+2DF=4√3,所以DF=√32
∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF
证明:∵△ABC是等边三角形∴∠A=∠B=60°,AB=AC=BC∵AF=BD=CE∴AE=BF∴△AEF≌△BFD∴EF=FD同理可得ED=FD∴△EDF是等边三角形
1.因为AD=BE=CF所以AF=DB=CE因为三角形ABC是等边三角形所以角A=角B=角C三角形ADF全等于三角形BDE全等于三角形CEF所以DF=DE=EF所以三角形DEF是等边三角形再问:那等你
因为BD=CE,△ABC为正△所以AB=AC,∠A=60°所以AD=AE,∠A=60°所以△ADE正三角形
(1)是平行四边形.证明如下:∵D,E分别是BC,AC的中点,∴BF=AD,∠FBD=30°,∠ADB=90°,又∵△ADE是等边三角形,∴∠ADE=60°∴∠FBD+∠ADB+∠ADE=180°∴B
∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF
证明因为三角形ABC是等边三角形所以角A=角B=角C=60度因为DE平行BC所以角ADE=角ABC=60度(两直线平行,同位角相等)角AED=角ACB=60度(两直线平行,同位角相等)得角A=角ADE
(1)△DEF是等边三角形.证明如下:∵△ABC是等边三角形,∴∠A=∠B=∠C,AB=BC=CA,又∵AD=BE=CF,∴DB=EC=FA,(2分)∴△ADF≌△BED≌△CFE,(3分)∴DF=D
1.三角形ABD和ACE啊证明:边AB=ACAD=AE因为角BAD+角DAC=角EAC+角DAC所以角BAD=角EAC两边夹一角相同,这两个三角形也就相同了.2.因为1两个三角形相等,所以角ABD=角
证明:(1)∵△ABC、△ADE是等边三角形,∴AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠DAE+∠CAD,即:∠BAD=∠CAE,∴△BAD≌△CAE,∴BD
四边形BDEF是平行四边形,通过角度的计算结合全等可以得到S△ABC:S四边形BDEF=1:2
先证明△ABD≌△BCE因为AB=BC∠ABC=∠ACB=60°BD=CE所以AD=BE又等边△ADF所以AD=DF所以BE=DF因为△ABD≌△BCE所以∠BAD=∠CBE∠ADB=∠BEC∠C=∠
证明:∵AE∥BC,∴∠EAC=∠ACB=∠B=60°.又AC=BC,AE=BD,∴△AEC≌△BDC(边角边).∴∠ACE=∠BCD,CE=CD.∴△CDE是等腰三角形.∵∠BCD+∠ACD=60°
解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S
①因为ABC是等边三角形,所以AB=AC因为EC⊥BC,所以∠ECB=90°,所以∠ACE=30°,又因为D是AC中点,所以∠ABD=30°又因为EC=BD,根据边角边,AEC≌△ADB②因为AEC≌
再答:�����再答:��֤��再问:����ѧ����再答:����再答:�������������再问:��ģ��һ����߰��ⲻ�ᣬ����������再答:�һ�Ļ��һ�����再答:�
因为角ACE=角ECD=60度=角B因为三角形ABC是等边三角形,所以AB=AC再加上BD=CE所以三角形ABD全等于三角形AEC.所以,AD=AE所以角CAE=角BAD所以角BAC=角DAE=60度