如图12,C是以AB为直径的圆o上一点,过o作OE垂直于AC于点E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 00:14:00
设AH=x,AO=r,C是以AB为直径的半圆O上一点,CH⊥AB于点H,CH^2=AH*HB=x(2r-x),∴CH=√[x(2r-x)],E为CH中点,∴EH=CH/2=(1/2)√[x(2r-x)
因为三角形ABC的面积为:AC22=30×152,所以AC2=30×15;阴影部分的面积=π×1522-(πAC2×14-30×15×12),=225π2-(π×30×154-30×152),=225
(1)第一问有点无厘头~BD=BE.BC⊥AB.AB≥DE.∠EDB=∠DAB.∠ADB=90°.………………汗这种问题(2)因为∠DCB=∠BCA,∠CDB=∠CBA=90°,所以△DCB∽△BCA
(1)连接OC,OE,O和E分别为AB和BD中点,所以OE//AD,即
如图 解题思路:连接OD和DB.先求出以AB为直径的圆的半径为2(周长是2/3 π×3×2=4 π,4 π÷2 π=2)由∠DOB=60°,OD=OB
∵CD切⊙O于C,∴∠DCN=∠DAM,又∠CDN=∠ADM,∴△CDN∽△ADM,∴∠CND=∠AMD,∴∠CMN=∠CNM,∴△CMN是以MN为底边的等腰三角形.再问:∵CD切⊙O于C,∴∠DCN
∵CH⊥AB,DB⊥AB∴CH‖BD∵E是CH中点∴F是BD中点即F为RT△BCD斜边上的中点,那么∠CBF=∠FCB因为∠CBF=∠BAC=ACO∴∠GCO=ACB=90°.即CG是⊙O的切线过F做
证明:(1)∵CH⊥AB,DB⊥AB,∴△AEH∽△AFB,△ACE∽△ADF.(1分)∴EHBF=AEAF=CEFD.∵HE=EC,∴BF=FD.(3分)(2)连接CB、OC,∵AB是直径,∴∠AC
(1)证明:∵CH⊥AB,DB⊥AB,∴△AEH∽△AFB,△ACE∽△ADF,∴EHBF=AEAF=CEFD,∵HE=EC,∴BF=FD(2)证明:连接CB、OC,∵AB是直径,∴∠ACB=90°∵
连接OC.AB为直径,C为弧AB的中点,则:OC⊥AB,OC=AO=OB=3;BF=OB-OF=2.设BD=X,则DE=DF=2+X.DE为圆的切线,则:DE²=BD*AD,(2+X)
如图,连接OC、OD、BD.∵C、D是以AB为直径的半圆上的三等分点,∴∠BOD=∠COD=60°.CD=BD.又∵OC=OD,∴△OCD是等边三角形,∴∠CDO=60°∴∠CDO=∠BOD,∴CD∥
再问:为什么S△PCD=S△PBO?再答:
⑴连结OD交BC于G∵D是弧BC的中点∴OD⊥BC∴∠CGD=90°∵AB是直径∴∠ADB=90°=∠E∴∠EDG=360°-∠E-∠ECG-∠CGD=90°∴OD⊥EF∴EF是半圆的切线⑵设⊙O的半
这个不难三角形boc为直角等腰三角形所以bc=15√2ab=30oc=15三角abc=15x30x1/2=225扇形acbe=1/4πbc^2=450π/4阴影=扇形-三角=450π/4-225再问:
连接CO、DO,如下图所示,∵C,D是以AB为直径的半圆上的三等分点,CD的长为13π,∴∠COD=60°,圆的半周长=πr=3×13π=π,∴r=1,∵△ACD的面积等于△OCD的面积,∴S阴影=S
1、连接OD、OC,对三角形OAC和三角形ODC,三对应边相等,所以全等,得∠ODC=∠OAC=90°,所以CD是圆O切线2、OC与AD的交点为G依题意可知CG=AD=2BDOC平行BD,DF:FG=
4+4FG+FG^2=2BG^2=2(FG^2-BF^2),BF=24+4FG+FG^2=2FG2-8,FG^2-4FG-12=0.
(Ⅰ)证明:∵E,F分别是PB,PC的中点,∴BC∥EF,又EF⊂平面EFA,BC不包含于平面EFA,∴BC∥面EFA,又BC⊂面ABC,面EFA∩面ABC=l,∴BC∥l,又BC⊥AC,面PAC∩面