如图1-1-10,三角形ABC中,ab=ac,ad垂直于bc

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:09:18
如图1-1-10,三角形ABC中,ab=ac,ad垂直于bc
如图,三角形ABC中,AB=AC,BD=CE,角1=角B.求证:三角形DEF是等腰三角形(图有点畸形,在三角形ABC中,

AB=AC告诉我们∠B=∠C证明:∵AB=AC∴∠B=∠C∵∠B=∠1且∠B+∠BDE+∠DEB=180°∠DEB+∠1+∠FEC=180°∴∠BDE=∠FEC在△BDE和△CEF中:∠BDE=∠FE

已知:如图,三角形ABC中,AD=DB,角1=角2,求证:三角形ABC相似三角形EAD

证明:因为AD=BD∴∠B=∠1∵∠ADC=∠B+∠1∴∠ADC=2∠1∵∠1=∠2∴∠BAC=2∠1=∠ADC∵∠C=∠C∴△ACD∽△BCAE还是不清楚

如图:三角形ABC中,OA平分角BAC,角1=角2,求证三角形ABC是等腰三角形!

OA平分角BAC,所以角BAO等于角CAO,因为角1等于角2,所以有180度-角BAO-角1=180度-角CAO-角2.即:角BOA=角COA,又因为公用边OA=OA,根据三角形相等规则:两角及其夹边

如图,三角形ABC全等于三角形EBD,问角1与角2相等吗

相等外角定理∠DOB=∠E+∠2∠AOE=∠A+∠1∠DOB=∠AOE(对顶角)∠E=∠A(全等三角形)所以∠1=∠2

如图,三角形ABC全等于三角形FED,试证明:(1)AD等于CF

再问:太给力了,你的回答完美解决了我的问题!再问:再问:再问:

如图1,在三角形ABC中,D.E.F分别是边AB,AC,BC中点,若三角形abc面积为10

是求S△DEF吗?如下:S△AEF:S△ABC=1/4(△AEF的高和底分别是△ABC的高和底的1/2),同理S△BDE:S△ABC=1/4,S△CFD:S△ABC=1/4,所以S△DEF=(1-1/

如图,三角形OEF中,三角形OAB、三角形ABC、三角形BCD、三角形CDE、三角形DEF的面积都是1,求阴影三角形CD

题目答案是3/4这道题目是以前的中考题目,步骤很麻烦,还是不要做了

abc三角形abc三角形,如图AE等于2.2厘米,BE等于4.2厘米,角1加角2等于90度,求三角形ADE和三角形BEF

答:把直角三角形ADE绕点E逆时针旋转到RT三角形GFE可以证明,GE垂直BE所以:面积之和=直角三角形BEG面积=2.2*4.2/2=4.62平方厘米

如图,三角形ABC中,角A=36°,角ABC=72° (1)三角形ABC是一个什么三角形,为什么?

要过程吗再问:要再答:因为角A等于36度,角ABC等于72度又因为三角形内角和为180度,所以角c等于72度,所以角ABC等于角C,所以AC等于AB等腰三角形再问:第二题呐?再答:因为AD等于BD.所

如图已知A(-3,1),B(-4,-2),C(-1,-1),三角形ABC经过平移后得到三角形A'B'C',三角形ABC中

⑵A'(2,3),B'(1,0),C'(4,1);⑶过C'作C'D⊥X轴于D,过A'作A'E⊥X轴于E,SΔA'B'C'

如图1,在三角形ABC和三角形EDC中,C=CE=CB-CD

在三角形ACB和三角形CED中AC=CB∠ACB=∠ECDCE=CD∴三角形ACB和三角形CED全等SAS∴∠B=∠EEC=BC∴在三角形ECH和BFC中∠3=∠3∠B=∠EBC=EC∴三角形ECH和

如图,已知三角形ABC全等于三角形ADE.试说明∠1=∠2

因为俩三角形全等所以∠BAC=∠DAE,两边都减去∠DACe所以∠1=∠2

如图,S三角形ABC=1,S三角形DEC=S三角形BDE=S三角形ACE,求S三角形ADE的面积

∵S△DEC=S△BDE,∴BD=DC∵S△CDE=S△ACE∴S△ACE:S△BCE=1:2,∴AE:BE=1:2S△ADE:S△BDE=1:2,不妨设S三角形DEC=S三角形BDE=S三角形ACE

如图,1已知rt三角形abc中ab=ac角abc=

ight-angledtriangle的缩写直角三角形又AB=AC则角A为直角为90°则剩余两个角都为45°则角ABC=45°

如图1,△ABC的周长为1,连接三角形ABC三边中点

我给的是n个的通用公式,你看看,如果想要全部的解题过程请去我截图里面的链接中搜答案,解析过程有点长我截不完,望见谅.

如图,S三角形ABC=1,S三角形BDE=S三角形BDE=S三角形ACE,求S三角形ADE的面积

S三角形BDE=S三角形BDE=S三角形ACE?是S△DEC=S△BDE=S△ACE吧∵S△DEC=S△BDE,∴BD=DC∵S△CDE=S△ACE∴S△ACE:S△BCE=1:2,∴AE:BE=1:

如图1-10,AD.BE.CF是三角形ABC的三条中线,相交于点O,S三角形BDO=1,求S三角形ABC

根据重心性质,∵AO=2OD,∴S△ABO=2S△BDO=2,(高相同),∵BD=CD,∴S△BDO=S△ODC=1,同理,S△AOC=2S△ODC=2,∴S△ABC=1+1+2+2=6.