如图1,直线y=x 1交x轴于点A,交y轴于点C,OB=3OA,M在直线AC上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:45:34
如图1,直线y=x 1交x轴于点A,交y轴于点C,OB=3OA,M在直线AC上
如图1,在平面直角坐标系中,点O是坐标原点,直线y=-4/3x+8与y轴交于点A,与x轴交于点C,此时AC=10.直线y

(1)b=8,k=-1/2,直线AB:y=-1/2x+8(2)设点P(m,0),则G、Q两点横坐标均为m,G点纵坐标=-4/3m+8Q点纵坐标=-1/2m+8因为GQ=5/2所以(G点纵坐标-Q点纵坐

如图1,直线y=-12x+1交x轴于点A,交y轴于点B,C(m,-m)是直线AB上一点,双曲线y=kx经过C点.

(1)把x=m,y=-m代入y=-12x+1,得:-m=-12m+1,解得:m=-2,则C的坐标是(-2,2),代入y=kx得:k=-4,则双曲线的解析式是:y=-4x;(2)在y=-12x+1中,令

如图,已知抛物线x2=4y,过抛物线上一点A(x1,y1)(不同于顶点)作抛物线的切线l,并交x轴于点C,在直线y=-1

(1)证明:∵y=x24,∴y′=x2,∴kl=y′|x=x1=x12,∴l:y=x12(x−x1)+x124=x12x−x124,∴C(x12,0),设H(a,-1),∴D(a,0),∴TH:y=-

如图1,在平面直角坐标系中,点O是坐标原点,直线y=-4/3x+8与y轴交于点A,与x轴交于点C(6,0),直线y=

(1)点A坐标(0,8)、点B(16,0)设AB的解析式为:y=kx+c将AB点坐标代入解得k=-1/2,c=8即AB的解析式为:y=-1/2x+8(2)设点P的坐标为(x‘,0)则点G、Q的坐标(X

如图,已知直线y=1/2x+1与y轴交于点A,与x轴交于点D

(3)抛物线y=1/2x²-3/2x+1对称轴是x=3/2,设M(3/2,Y),∵B、C关于x=3/2对称,∴MC=MB,∴要使|AM-MC|最大,便是使|AM-MB|最大,由三角形两边之差

如图,已知直线y=1/2x+1与y轴交于点A,与x轴交于点D,抛物线y=1/2x²+bx+c与直线交于A,E两

(1)y=1/2x+1与y轴交于点A,可以得到A点坐标为(0,1),又知B点坐标为(1,0),代入y=1/2x²+bx+c,解得b=-3/2,c=1,该抛物线的解析式为y=1/2x²

如图11,在平面直角坐标系中,直线Y=1\2X+4交X轴于点A,交Y轴于点B.(1)直线Y=-X+10交直线AB于点D,

1.要使S三角形AEF=1\4S三角形ACD,且EF//CD,则AF=1/2AC根据A,C的坐标可得F(1,0)或(-17,0)设EF的解析式Y=-X+b,将F坐标代入Y=-X+1或Y=-X-172.

如图,抛物线y=ax²+bx+c交x轴于A、B两点,交y轴于点c,对称轴为直线x=1,

1.已知三点A(-1,0),B(3,0),C(0,-3),得到抛物线y=x²-2x-32.只有在∠APC为直角的时候,△APC周长最小,∠APC为直角,可以得到两个点,分别为(1,-1)(1

如图,直线AB与反比例函数y=4/x(x>0)图像交于点M,N,交y轴、x轴于点A,B.

四边形DNAE的面积与四边形CMAF的面积相等.过M作MP⊥Y轴NQ⊥Y轴,分别交Y轴于点P与点Q∵因为四边形DNAE和四边形CMAF是平行四边形∴S平行四边形DNAE=DN×NQS平行四边形CMAF

如图,在平面直角坐标系中,直线y=x+1与y=-3/4x+3交于点A,分别交x轴于点B和点C,点D在直线AC上.

1.y=x+1代入y=(-3/4)*(x-4)得:二直线交于点A(8/7,15/7)二直线分别交x轴于点B(-1,0)和点C(4,0)2.(1)BD=CD=>D在BC的垂直平分线上,D点的横坐标为x=

初二简单函数问题如图,直线y=1/2x+2交x轴于点A,交y轴于点B,点P【x,y】是线段AB上一动点【与A,B不重合】

 直线L: y=(x/2)+2 A(-4,0),B(0,2) P(x,y) 由图形可知y>0 x<0 SPAO=(1/2)×|OA

如图,双曲线y=k/x与直线y=kx+b只有一个交点(1,2),且直线y=kx+b交于Y轴于点B,交于X轴为点c

因为双曲线y=k/x与直线y=kx+b有一个交点(1,2)所以2=k/1,2=k+bk=2,b=2-k双曲线y=2/x与直线y=2x+b只有一个交点2x^2+bx-2=0有两个相等的实根b^2+16=

如图,直线y=1/2x与直线y=-x+6交于点A,直线y=-x+6交x轴于点B,

1,联立y=x/2,y=-x+6.解得x=4,y=2故A(4,2)由y=-x+6,y=0时,x=6故B(6,0)S△AOB=1/2*6*2=62,∵S△AOD∶S△ADB=1∶2,△AOD与△ADB同

如图直线y=x+3交反比例函数y=k\x的图像于点A,交x轴于点B,且过点C(-1,2).将直线AB向下平移

应该是线段AC平移到线段OD吧~设A(a,a+3)C(-1,2)所以向量CA=(a+1,a+1)OD平行且等于CA故D(a+1,a+1)A,D都在反比例函数上k=a(a+3)=(a+1)(a+1)a&

如图,直线l1:y=-x+b与x轴交于点A,与y轴交于点B,与直线l2:y=-2x交于点(m,6)

(1)点P(m,6)在直线L2:y=-2x的图象上,则:6=-2m, m=-3,即点P为(-3,6),点P又在直线L1:y=-x+b的图象上,故:6=-(-3)+b,b=3.即直线L1为:&

如图,已知点C为直线y=x上在第一象限内一点,直线y=2x+1交y轴于点A,交x轴于B.

好分析沿OC方向平移根号2个单位,即y-2的同时,x+1.(即y+2的同时,x-1)y=2x-1还有y=2x+3

如下图直线l与抛物线Y^2=x交于A(x1,y1)B(x2,y2)两点,与X轴交于点M,且y1y2=-1,求证点M的坐标

M(m,0)直线ly=k(x-m)x=y/k+mY^2=x代入y^2-y/k-m=0y1y2=-m=-1m=1M的坐标为(1,0)