如图1 角A=70°,BP.CP分别平分角ABC和角ACB,求角P

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:36:51
如图1 角A=70°,BP.CP分别平分角ABC和角ACB,求角P
已知△ABC中,∠A=70°,BP是∠ABC的平分线,CP是∠ACD的平分线.(1)如图1,求∠P的度数

【第(1)题】根据三角形外角的性质,有∠ACD=∠A+∠ABC,∠PCD=∠P+∠PBC而,BP、CP分别是∠ABC、∠ACD的平分线,即有,∠PBC=(1/2)*∠ABC,∠PCD=(1/2)*∠A

如图BP,CP分别平分∠ABC和∠ACD若∠A=40°求∠P

∵∠ACD=∠A+∠ABC,CP平分∠ACD∴∠PCD=∠ACD/2=(∠A+∠ABC)/2∵BP平分∠ABC∴∠PBC=∠ABC/2∴∠PCD=∠P+∠PBC=∠P+∠ABC/2∴∠P+∠ABC/2

如图,∠A=70°,BP,CP分别平分∠ABC和∠ACD,求∠P 的度数,并说明理由.

根据三角形外角的性质,有∠ACD=∠A+∠ABC,∠PCD=∠P+∠PBC而,BP、CP分别是∠ABC、∠ACD的平分线,即有,∠PBC=(1/2)*∠ABC,∠PCD=(1/2)*∠ACD代入化简得

1如图,已知角a等于70°,BP.CP分别平分角abc和角acd,求角p的度数,并说明理由.

如下:∠ACD=∠ABC+∠A=∠ABC+70°∠PCD=1/2*∠ACD=1/2*∠ABC+35°∠PCD=∠PBC+∠P∠PBC+∠P=1/2*∠ABC+35°∠P=35°

如图,△ABC中,AB=AC,∠A=40°,BP=CE,BD=CP,则∠DPE=______度.

∵AB=AC,∠A=40°,∴∠DBP=∠ECP=70°,又∵BP=CE,BD=CP,∴△DBP≌△PCE,∴∠BDP=∠EPC,又∵∠DBP=70°,∴∠DPB+∠BDP=110°,∴∠DPE=18

如图:BP、CP是任意△ABC中∠ABC、∠ACB的平分线,可知∠BPC=90°+1/2A,

结论:∠P=1/2(∠A+∠D)[情况1]AB‖CD则∠PBC+∠PCB=1/2(∠ABC+∠BCD)=90°∠P=180°-90°=90°因为∠A+∠D=180°所以∠P=1/2(∠A+∠D)[情况

如图,BP,CP分别平分∠ABC和∠ACB,求证:∠BPC=90°+1/2∠A

∠BPC+∠PBC+∠PCB=180∠BPC+1/2∠ABC+1/2∠ACB=180(1)∠A+∠ABC+∠ACB=1801/2∠A+1/2∠ABC+1/2∠ACB=90(2)(1)—(2)得:∠BP

如图,bp,cp分别是角abc,角acd的平分线,角p=27度,那角a=

角的负号不写了A+ABP=P+ACPA=P+ACP-ABPA=P+(1/2)(ACD-ABC)A=P+(1/2)A1/2A=PA=54度

如图,BP,CP,分别平分∠ABD,∠ACD,若∠A=40°,求∠P

∵∠ACD=∠A+∠ABC,CP平分∠ACD∴∠PCD=∠ACD/2=(∠A+∠ABC)/2∵BP平分∠ABC∴∠PBC=∠ABC/2∴∠PCD=∠P+∠PBC=∠P+∠ABC/2∴∠P+∠ABC/2

如图 bp ,CP平分角ABD,角ACD若角A等于40,求角P

/>∵∠ACD=∠A+∠ABC,CP平分∠ACD∴∠PCD=∠ACD/2=(∠A+∠ABC)/2∵BP平分∠ABC∴∠PBC=∠ABC/2∴∠PCD=∠P+∠PBC=∠P+∠ABC/2∴∠P+∠ABC

如图,BP,CP分别平分∠ABD,∠ACD,若∠A=40°求∠P

∵∠ACD=∠A+∠ABC,CP平分∠ACD∴∠PCD=∠ACD/2=(∠A+∠ABC)/2∵BP平分∠ABC∴∠PBC=∠ABC/2∴∠PCD=∠P+∠PBC=∠P+∠ABC/2∴∠P+∠ABC/2

如图,BP,CP分别平分∠ABD,∠ACD,若∠A=60°,求∠P

/>∵∠ACD=∠A+∠ABC,CP平分∠ACD∴∠PCD=∠ACD/2=(∠A+∠ABC)/2∵BP平分∠ABC∴∠PBC=∠ABC/2∴∠PCD=∠P+∠PBC=∠P+∠ABC/2∴∠P+∠ABC

如图,△ABC的外角平分线BP,CP交于点P,求证:∠P=90°—1/2∠A.

这个算一下就好了啊.∠PBC=1/2(∠A+∠ACB)∠PCB=1/2(∠A+∠ABC)∠P=180°-上面两个也就是∠P=180°-∠A-1/2∠ACB-1/2∠ABC因为1/2∠ACB+1/2∠A

已知,如图,三角形abc的两个外角平分线bp,cp交于点p,角A=64度,求角P的度数

因为角A=64度所以角ABC+角ACB=180-64=116度所以角PBC+角PCB=(2*180-116)/2=122度所以角P=180-122=58度

如图,若CP为平分∠ACE,BP,BP是∠ABC的角平分线,∠A=50°,求∠P

∠A=50,所以∠ABC+∠ACB=130∠ACP=1/2(180-∠ACB)=90-∠ACB/2∠P=180-∠PBC-(∠ACB+∠ACP)因为∠PBC=∠ABC/2所以∠P=180-∠ABC/2

如图,已知三角形ABC中,BP,CP分别平分角ABC和角ACD,证明,角P=二分之一角A

在BC延长线上取点E∵∠A+∠ABC+∠ACB=180∴∠ABC+∠ACB=180-∠A∵∠ACE=180-∠ACB,CP平分∠ACE∴∠PCE=∠ACE/2=(180-∠ACB)/2=90-∠ACB

如图,△ABC,CP、BP分别平分三角形的外角∠ECB,∠DBC,若∠A=50°,那么∠P等于______°.

∵∠BCP=12∠BCE=12(∠A+∠CBA),∠CBP=12∠CBD=12(∠A+∠ACB);(角平分线的定义及三角形的一个外角等于与它不相邻的两个内角的和)∴∠BCP+∠CBP=∠A+12(∠C

如图,∠A=86°,BP平分∠ABC,CP平分∠ACB

∵∠A=86°,∴∠ABC+∠ACB=94°又∵BP平分∠ABC,CP平分∠ACB∴∠PBC=1/2∠ABC,∠PCB=1/2∠ACB.∴∠PBC+∠PCB=1/1(∠ABC+∠ACB)=47°.∴∠

如图,角A=60°,线段BP、BE把角ABC三等分,线段CP、CE把角ACB三等分,求角BPE的大小.

∵∠A=60°∴∠ABC+ACB=120∵BP,BE和CP,CE三等分它们 ∴∠EBC∠+ECB=∠EBC+∠ECB=40 ∴∠BEC=140 ∴其外角为360-140=