如图1 oa ob是圆o的半径,且OA垂直OB,点C是OB延长线上任意一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:08:40
圆心为qad=4,db=1ad=3qa^2+qb^2=ab^2ad^2+qd^2=qa^2qd^2+db^2=qb^2
直角三角形求边长,通常用勾股定理设BC=xBC^2+AC^2=AB^2则x^2+2^2=(8-2-x)^212x=36-4x=8/3BC=8/3,AB=10/3因为内切所以半径=AC*BC/(AB+B
1.连接OD∵AO垂直于OB∴∠AOB=90°∵D为圆O的切点,且OD为半径∴∠0DC=90°∵A0=0D∴∠0AE=∠ODE又∵∠A0B=∠0DC=90°∴∠0DC-∠0DE=∠A0B-∠0AE=∠
设ac切圆d于点g,bc切圆d于点f,连接df,fg,ad,bd,cd则有s=s△agd+s△aed+s△cdf+s△sgd+s□bedf因为s/de²=4根号3所以4根号3*de²
因为OA,OB是圆心中点O的半径所以OA=OB,因为AM=2OM,BN=2ON所以OM=1/3OA,ON=1/3OB所以OM=ON因为MC=NC,OC=OC所以△OMC全等于△ONC(边边边)所以∠A
作OD垂直于BC,垂足为D,当圆O与直线BC相切时,OD=r=1/2,因为角B=60度所以BO=ODsinB=(根号3)/4.因为BO=a,所以当a=(根号3)/4时,直线BC与圆O相切,当0
连结AO并延长与圆O相交于点D,连结BD,由圆的性质,AD为直径,AD=2,∠ABD=90º,又∠ADB与∠ACB同对着弦AB,∴∠ADB=∠ACB=45º,∴在直
证明:连接OC∵AC‖OD∴∠A=∠BOD,∠C=∠COD∵OA=OC∴∠A=∠C∴∠COD=∠BOD∴弧CD=弧BD(2)连接OC∵弧CD=弧BD∴∠COD=∠BOD∵OA=OC∴∠A=∠C∵∠CO
过O做OE垂直AB则有三角形相似可得OE/BC=AO/ACAO=m,BC=2√3AC由勾股定理=4所以OE=2√3m/4=√3m/2没有公共点,所以√3m/2>r=1m>2√3/3O在AC上,所以OA
∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直
证明三角形AOD和BOC全等SAS(边角边)第一边FO=BO,公共角BOF,第二边CO=DO(半径的一半同样相等);所以三角形AOD全等于三角形BOC,所以角A=角B
长方形的面积=圆面积的一半即3.14乘1的平方再乘二分之一=1.57平方厘米,长方形的面积除以宽等于长即O,O"的长1.57除以1等于1.57厘米
证明:连接OC,∵OD∥AC,∴∠BOD=∠A,∠COD=∠C,∵OA=OC,∴∠A=∠C,∴∠COD=∠BOD,∴CD=BD.
(1)证明:连接AO,因为△ABC中,AB=AC,∠ABC=30°,所以∠ACB=∠ABC=30°,即∠BAC=120°,又因为OA=OC所以∠OAC=∠OCA=30°,因此∠OAB=90°,即OA⊥
连结AO,延长AO交圆O于F,连结BF、CF,因为AF是圆O的直径所以,∠ABF=∠ACF=90°(直径所对的圆周角是直角)即AC⊥FC因为AC⊥BD所以,FC∥BD(垂直于同一条直线的两条直线平行)
如图,连接O1D,∵圆O1的切线AD交OC的延长线于点E,∴O1D⊥AE,由题意知,CO=AO=2r,O1D=O1C=r,由切线长定理知,AD=AO=2r,∴AO1=根号5r,由勾股定理得,AE2=A
假想三角形CDB的B点移动到O点,三角形CDB面积是不变的,于是阴影面积就变为一个90°的伞形:阴影面积=π*1*1*(90/360)=π/4=0.785
OM的最小值就是弦心距,即OM⊥AB,根据垂径定理:AM=√(OA^2-OM^2)=6,∴弦AB=2AM=12㎝.
∵弧CD为90°∴角COD=90°∵CO=DO∴角CDO=45°∵弦CD平行于AB∴角DOB=角CDO=45°从而角COB=角COD+角ODB=90°+45°=135°∴扇形OCDB的面积S1=135
半径为5,那么直径就为10,直径是最长的弦了,怎么会有12的呢