如图,顶点为A的抛物线y=a(x 2)²-4交x轴于点B(1,0)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:14:52
/>开口向下,a<0;对称轴x=-b/2a>0,而a<0,可得b>0,抛物线与y轴交于正半轴,所以当x=0时,y=c>0.因为抛物线与x轴有两个交点,所以b^2-4ac&
EF=3,所以C点坐标为(0,3)抛物线经过C点,所以3=-0²+b*0+c所以c=3OF=2,EF=3,所以E点坐标为(2,3)抛物线经过E点,所以3=-2²+b*2+3所以b=
把点B(0,-1)代入y=ax2+bx+c中得:c=-1,∴b=4a因为顶点A在x轴上,所以△=0,即b²-4ac=0b²+4a=0b=4ab²+b=0b1=0,b2=-
(1)∵直线y=ax+3与y轴交于点A,∴点A坐标为(0,3),∴AO=3,∵矩形ABCO的面积为12,∴AB=4,∴点B的坐标为(4,3),∴抛物线的对称轴为直线x=2; &n
第3不会了···不好意思··
猜想D在A的右侧,只取下列的①.①当D在A的右侧:a0,c0,2a+b>0,a+b+c=0,a-b-c
(2)②先求出顶点(2,-10),然后设(2-a,-10+√3a)代入解析式解方程即可(3)设抛物线Y=a(X-m)²+n当a<0时又∵C(m-b,n-√3b)代入自己解得一个答案当a>0时
由题意可知:a<0,1≤m≤4,抛物线的最大值为4,即n=4.当顶点取(1,4)时,点C取得最小值-3,∴0=a(-3-1)2+4,解得a=-14.∴y=−14(x−m)2+4,当顶点取(4,4)时,
解题思路:本题的关键是证明△AEF∽△DEG,设E(1,a),由相似比得关于a的方程,可得E的坐标,再求出AE的解析式,最后与抛物线的解析式联立方程组即可。解题过程:
(1)∵四边形OCEF为矩形,OF=2,EF=3,∴点C的坐标为(0,3),点E的坐标为(2,3).把x=0,y=3;x=2,y=3分别代入y=-x2+bx+c中,得c=33=−4+2b+c,解得b=
过点P作PM⊥y轴于点M,∵抛物线平移后经过原点O和点A(-6,0),∴平移后的抛物线对称轴为x=-3,得出二次函数解析式为:y=1/2(x+3)^2+h,将(-6,0)代入得出:0=1/2(-6+3
(1)抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,-1),∴b^=4ac,c=-1,又b=-4ac,∴b^=-4a=-b,a≠0,∴b=-1,a=-1/4,∴A(-2,0).(2
①∵抛物线对称轴为y轴∴有-b/2a=0又a=-1∴b=0此时解析式为y=-x2+c∵抛物线过点A将A带入有0=-4+c∴c=4解析式为y=-x2+4②由公式(4ac-b平方)/4a有-16/-4=4
(1)∵抛物线y=x2+bx+3经过点A(3,0),∴9+3b+3=0,解得:b=-4,∴此抛物线的解析式为:y=x2-4x+3=(x-2)2-1,∴此抛物线的顶点为C的坐标为(2,-1);(2)∵点
设,A(x1,y1)p是A,B中点,B(0,1)x1+xB=2xp.y1+yB=2yp.得x1=2,y1=5,由B点坐标代入y=ax^2+n(a
(1)y=x2+4x+k=(x+2)2+k-4∴抛物线的顶点C的坐标为(-2,k-4)(4分).(2)过点C作CD⊥x轴于点D,由抛物线的对称性可得CA=CB∵△ABC是直角三角形∴BD=CD=4-k
(1)抛物线y=-14x2-x+2与y轴的交于点B,令x=0得y=2.∴B(0,2)∵y=-14x2-x+2=-14(x+2)2+3∴A(-2,3)(2)证明:当点P是AB的延长线与x轴交点时,PA-
∵抛物线y=x2与直线y=x交于A点,∴x2=x,解得:x1=1,x2=0(舍去),∴A(1,1),∴抛物线解析式为:y=(x-1)2+1,故选:C.