如图,过正方形ABCD对角线BD上一点G,作GE垂直于BC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:47:19
如图,过正方形ABCD对角线BD上一点G,作GE垂直于BC
如图,在正方形ABCD中,对角线

证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE

如图1,正方形ABCD和过其对角线交点O的正方形OEFG的边长相等,OE交AB于M,OG交BC于N.

(1)证明:∵∠AOM+∠BOM=90°,∠BON+∠BOM=90°,∴∠AOM=∠BON,∵四边形ABCD和四边形OEFG都是正方形,∴AO=BO,∠OAM=∠OBN=45°,在△AOM和△BON中

已知:如图,过正方形ABCD的顶点C作平行于对角线BD的直线MN,自B引直线交CD于E,交MN于F,且BF=BD,求∠D

过F做BD的垂线,垂足为G,连接AC交BD与O因为ABCD为正方形,所以OC=AC/2=BD/2,且OC⊥BD又CF‖BD,FG⊥BD,所以FG=OC=BD/2=BF/2所以∠FBG=30度,(直角三

如图,过正方形ABCD对角线BD上的一点P,作PE⊥BC于E,作PF⊥CD于F,求证:AP=EF 如图,过正方形ABCD

证明:连接PC,∵直线BD是轴对称图形正方形ABCD的一条对称轴,点P在BD上,且A,C是一对对称点∴AP=CP又易证四边形ECFP是矩形∴EF=PC∴AP=EF

已知,如图,正方形ABCD的对角线AC与BD

证明:∵ABCD正方形,∴∠DOF=∠COE=90°,OD=OC,∴∠OCE+∠OEC=90°,∵DG⊥CE,∴∠ODF+∠OEC=90°,∴∠OCE=∠ODF,∴ΔOCE≌ΔODF,∴OE=OF.

已知:如图,过正方形ABCD的顶点C作平行于对角线BD的直线MN,自B引直线交CD于E,交MN于F,且BF=BD,求证D

过F做BD的垂线,垂足为G,连接AC交BD与O因为ABCD为正方形,所以OC=AC/2=BD/2,且OC⊥BD又CF‖BD,FG⊥BD,所以FG=OC=BD/2=BF/2DE=DF

如图,过正方形ABCD的顶点C作平行于对角线BD的直线MN,自B引直线交CD于E,交MN于点F,且BF=BD,求∠DBF

很经典的一个题过点F作FH⊥BD于H,取BD的中点O,连结OC∴OC=1/2BD易知四边形CFHO是矩形∴FH=OC=1/2BD∵BD=BF∴FH=1/2BF∴∠DBF=30°(直角三角形中,如果有一

如图,过正方形ABCD的顶点C作平行于对角线BD的直线MN,自B引直线交CD于E,交MN于点F,且BF=BD,求证DE=

如图,作FH⊥BD  FH=CO=BD/2=BF/2   ∴∠FBH=30º∠BDF=∠BFD=﹙180º-30º﹚/2

已知如图,过正方形ABCD的顶点B作对角线AC的平分线BF,E点是BF上一点,且四边形AEFC是菱形,EH⊥AC,垂足为

证明:在正方形ABCD中,AC⊥BD,AC=BD,OB=1/2BD=1/2AC,又∵四边形AEFC是菱形,∴AC=CF,AC∥EF,∵EH⊥AC,∴∠BOH=∠OHE=∠OBE=90°,∴四边形BEH

已知,如图,过正方形ABCD的顶点A作对角线BD的平行线,在这条线上取一点E,使BE=BD,连

延长DA至F.使得DA=AF连接EF,BF.可证△EAF≌△EAB.可知EB=EF,又EB=BF,则△EFB是等边三角形,∠EBF=60°.则∠DBE=30°.又BD=BE,∠DEB=180°-30°

10、如图,把正方形ABCD沿着对角线AC的方向移动到正方形A’B’C’D’的位置,它们重叠部分(图中阴影部分

你好我是一中的老师,这是我校期中联考的题目,我先把题目补充完整:请见图片:AA'=2--√2AC=2  AD=-√2  S1=2S阴影=1 &

如图,在平面直角坐标系中,已知A(0,1)、C(0,7).以AC为对角线作正方形ABCD.(1)求B点的坐标;(2)过点

(3,4)再问:����Ҫ��̵�再答:等等啊,给你拍过去因为a(0,1)c(0,7)所以AC=6,所以BD二6。AcLBD,所以B(3,4)设E点座标为(a,b)做BFLx轴交DA于F,所以BF二6

如图,四边形ABCD,BEFC都是正方形,点P 是AB边上一个动点(不与点A,B重合),过点P作DP的垂线交对角线BF于

连接MP,证明DMP全等PBQ(角边角)第二个,相等的,截个DN=PB,还是个证明全等……

如图,正方形ABCD的对角线AC上取一点E,使AE=CD,过点E作EF丄AC交BC于F,求证:(1)EF=BF;(2)B

连接AF∵ABCD是正方形∴∠B=∠D=90°AB=BC=AD=CD∵AE=CD∴AE=AB∵EF⊥AC∴∠AEF=∠B=90°∴△ABF和△AEF是Rt△在Rt△ABF和Rt△AEF中AB=AEAF

如图,在正方形ABCD中,对角线2倍根号2,则正方形的边长为?

设正方形的边长为x,则x²+x²=(2√2)²2x²=8x²=4x=2所以正方形的边长为2

如图,在正方形ABCD中,对角线的长为2,动点P沿对角线BD从点B开始向D运动

在直角△BDC中,BC=DC,BD=2,由勾股定理得:BC=√2,过点P作BC的垂线,垂足为E,得等腰直角△BPE,那么PE=(√2/2)x,所以S△PBC=1/2BC*PE=1/2*√2*√2/2*

如图,过正方形ABCD对角线BD上的一点P,作PE⊥BC于E,作PF⊥CD于F,求证:AP=EF

过P,作FP延长线交AB于M,(连结EF)则PE=PM,EB=MB,PEBM为小正方形AM=AB-MB=大正方形边长-小正方形边长PF=MF-PM=大正方形边长-小正方形边长因此,三角形AMP与三角形

如图,AC为正方形ABCD的一条对角线,点E为DA边延长线上的一点,连接BE,在BE上取一点F,使BF=BC,过点B作B

(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,即∠ABK+∠CBG=90°,∵BK⊥BE,∴∠ABK+∠FBH=90°,∴∠FBH=∠CBG,∵BF=BC,∴∠BFH=∠BCG,∵∠BHG

如图,P是正方形ABCD对角线BD上一点

连接PC,∵PE⊥DC,PF⊥BC,ABCD是正方形,∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=P