如图,菱形ABCD中,AB=1,∠B=60°,沿对角线AC剪下

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:33:44
如图,菱形ABCD中,AB=1,∠B=60°,沿对角线AC剪下
如图:菱形ABCD中,E是AB的中点,且DE⊥AB,AB=a.求:

(1)连接BD,∵E是AB的中点,且DE⊥AB,∴AD=BD(等腰三角形三线合一逆定理)又∵AD=AB,∴△ABD是等边三角形,∴∠ABD=60°.∴∠ABC=120°(菱形的对角线互相垂直平分,且每

如图,在菱形ABCD中,CE⊥AB,垂足为E,BC=2,BE=1,求菱形的周长和面积.

由BC=2,BE=1sin30=1/2得角ECB=30由cos30=根号3/2得CE=根号3所以面积=2根号3

如图在菱形ABCD中,AB=4,AC∶BD=1∶根号3,求◇ABCD的面积

之前算错了……图中你把CD画反了因为菱形对角线垂直,AC∶BD=1∶根号3,即图中AD∶BC=1∶根号3所以图中AO∶CO=1∶根号3勾股定理得图中AC=2AO图中AO=2图中CO=2倍根号3所以图中

如图,菱形ABCD中,AB=4,E为BC中点,AE⊥BC于点E.求菱形ABCD的面积

AB=BC=4,又BE=EC,所以BE=EC=2,因为AE垂直于BC,所以BE^2+AE^2=AB^2,所以AE=2根号3,所以菱形ABCD的面积为8根号3

几道八下数学题如图,菱形ABCD中,DE⊥AB,垂足是E,DE=6,EB=2,则菱形ABCD的周长是----2.计算:3

一题一题打给你吧!第一个是DE⊥AB,△AED为直角三角形,DE/AD=sinA,AD=DE/sinA=6/(3/5)=10菱形ABCD的周长=10*4=40sinA表示直角三角形中A角的正弦值,即对

如图,在四边形abcd中,ab=cd,cb=cd,ab‖cd.求证:四边形abcd是菱形

证明:∵AB=CD,AB//CD∴四边形ABCD是平行四边形∵CB=CD∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)

如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上

话说应该是先求证:△AED≌△DFB,然后再求证△CDG≌△CBG'吧?先证明△AED≌△DFB:因为ABCD是菱形,所以AB=AD=BD=DC=BC,所以△ABD和△DCB是全等的等边三角形.所以角

1.已知,如图①所示,菱形ABCD中,AC,BD相交于点0,则CA:BD=1:√3.若AB=2,求菱形ABCD的面积.

(1)CO长为X,BO为√3X.因为在菱形ABCD中,所以AC垂直BD因为根据勾股定理,所以AB=2=根号下(X的平方+√3X的平方)X^2+(√3X)^2=2^2X^2+3X^2=44X^2=4X^

如图,在菱形abcd中,ab=2,角dab=60度,

NM垂直ADAM=2再问:能具体点吗?再答:菱形两条对边垂直角dab=60度AM=2AE=AB

已知如图,菱形ABCD中,E是AB的中点,且DE⊥AB,AE=2.

因为DE⊥AE,且AE=2,AE=EB所以:在直角△AED中,AE=2,AD=4,所以:∠ADE=30°所以:∠DAB=60°所以:∠ABC=120°由棱形的性质知:∠AOB=90°,∠OAB=∠OA

已知如图,菱形ABCD中,E是AB的中点,且DE⊥AB,AB=2.

因为菱形ABCDE是AB中点所以△DAE≌△DEB△ADE≌△DEB所以DB=DA=AB所以等边三角形DAB所以∠DBA=60因为菱形ABCD所以△DAB≌△DBC所以∠DBC=∠DBA=60所以∠A

如图:在菱形ABCD中,AB=AC=5cm,求∠BCD的度数和菱形ABCD的面积

在菱形ABCD中,AB=AC=BC=AD=CD,所以∠BCA=∠ACD=60度,所以∠BCD=120度.ABCD的面积为5*5=25

如图,菱形ABCD中,AB=AC=2cm,求∠BCD的度数和菱形ABCD的周长?

由菱形有BC=AB=AC=2m则有∠B=60°则∠BCD=120°周长为8m

如图,四边形ABCD中,AB=BC=CD=DA求证四边形ABCD菱形

解法1:因AB=BC=CD=DA所以四边形ABCD是菱形(根据:四条边都相等的四边形是菱形)解法2:因AB=CD,BC=DA所以四边形ABCD是平行四边形又AB=BC所以四边形ABCD是菱形(根据:有

如图,在菱形ABCD中,AB⊥DE,且OA=DE,AD=8,求菱形ABCD的面积

∵形ABCD∴AC⊥BD,∠DAO=∠BAO∵AB⊥DE,OA=DE∴△DAO全等于△ADE∴∠ADE=∠DAO∴∠ADE+∠DAO+∠BAO=90∴∠ADE=∠DAO=∠BAO=30∴DE=AD×c

如图,菱形ABCD中,AC,BD相较于点O,且AC:BD=1:根号3,AB=2,求菱形ABCD的面积

∵菱形的对角线垂直平分∴∠AOB=90º,AO=½AC,BO=½BD根据勾股定理AB²=AO²+BD²∵AB=2,BO=√3AO∴AO=1,