如图,若直线y=2分之一x 2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 16:08:25
如图,若直线y=2分之一x 2
如图抛物线y=2分之1x2-x+a与x轴交于AB两点,其顶点在直线y=-2x上.(1)求a的值.(2)求AB两点的坐标.

1)抛物线y=1/2x²-x+a的顶点坐标为[1,1/2(2a-1)]顶点在直线y=-2x则1/2(2a-1)=-2*12a-1=-4a=-3/22)抛物线的解析式;y=1/2x²

由曲线y=x2-1,直线x=0,x=2和x轴围成的封闭图形的面积(如图)可表示为(  )

将函数y=x2-1的图象位于x轴下方的部分对称到x轴的上方,而x轴上方的部分不变,得函数y=|x2-1|的图象可得曲线y=x2-1,直线x=0,x=2和x轴围成的封闭图形的面积,恰好等于函数y=|x2

如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=12x2+bx+c的顶点,则方程12x2

分三种情况:点M的纵坐标小于1,方程12x2+bx+c=1的解是2个不相等的实数根;点M的纵坐标等于1,方程12x2+bx+c=1的解是2个相等的实数根;点M的纵坐标大于1,方程12x2+bx+c=1

如图,直线y=kx(k>0)与双曲线y=2/x交于A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值等于

将A点代入直线方程:Y1=K*X1——(1)B点代入:Y2=K*X2——(2)因为:K>0,X≠0  所以(1)/(2)得:Y1*X2=X1*Y2由于直线通过原点,双曲线原点对称:就有:X2=-X1那

如图,直线y=kx(k>0)与双曲线y=4x交于A(x1,y1),B(x2,y2)两点,则2x1y2-7x2y1的值等于

由题意知,直线y=kx(k>0)过原点和一、三象限,且与双曲线y=4x交于两点,则这两点关于原点对称,∴x1=-x2,y1=-y2,又∵点A点B在双曲线y=4x上,∴x1×y1=4,x2×y2=4,∵

如图,抛物线y=12x2-x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=-2x上.

(1)∵y=12x2-x+a=12(x-1)2+a-12,∴抛物线的顶点坐标为(1,a-12),∵顶点在直线y=-2x上,∴a-12=-2×1,∴a=-32,∴抛物线的解析式为y=12x2-x-32,

如图,已知抛物线y= 1 2 x2+bx与直线y=2x交于点O(0,0),A

题不完整,不知是否如下题:如图,已知抛物线y=½x2+bx与直线y=2x交于点O(0,0),A(a,12).点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点

如图,已知点F(0,1),直线L:y=-2,及圆C:x2+(y-3)2=1. (1)若动点M到点F的

如图:(1)由题意可知,动点M到点F的距离等于它到直线 y=-1的距离.设动点M的坐标为(x,y),则有√[x^2+(y-1)^2]=|y+1|,即x^2=4y 所以动点M的轨迹E

如图,过抛物线x2=4y焦点的直线依次交抛物线与圆x2+(y-1)2=1于点A、B、C、D,则|AB|×|CD|的值是(

方法一:特殊化,抛物线x2=4y的焦点是F(0,1),取过焦点的直线y=1,依次交抛物线与圆x2+(y-1)2=1的点是A(-2,1)、B(-1,1)、C(1,1)、D(2,1),∴|AB|×|CD|

(2014•济南)二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx-t=0(t为实

解题思路:根据已于二次方程的根的判别式和题目中所给的条件可解答。解题过程:

如图,经过原点的抛物线y=-x2+2mx(m>0)与 轴的另一个交点为A.过点P(1,m)作直线P

这是菁优网答案,比较不错的(1)当m=3时,y=-x2+6x令y=0得-x2+6x=0∴x1=0,x2=6,∴A(6,0)当x=1时,y=5∴B(1,5)∵抛物线y=-x2+6x的对称轴为直线x=3又

如图7,直线y=kx(k>0)与双曲线y=4/x交于A(x1,y1),B(x2,y2)两点,则2x1y2-7x2y1=

设(x1,y1)是第一象限交点那么(x2,y2)则是第三象限的交点,则有x2,y2

如图直线y=kx【k

联立x^2=-4/k所以x1x2=4/kx1+x2=02x1y2-7x2y1=2x1*kx2-7x2*kx1=(-5k)*x1x2=(-5k)*(4/k)=-20k(x1^2+x2^2)=k[(x1+

如图已知直线y=kx+b与抛物线y=x2^交与P,Q两点,p横坐标为2且与x轴交与M(2,0)求直线y=kx+b表达

1、因为P在抛物线y=x²上,且横坐标为-2所以P的坐标(-2,4)P(-2,4),M(2,0)代入直线方程y=kx+b-2k+b=42k+b=0解得k=-1,b=2所以直线为y=-x+22

如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).

1直线y=x+m经过点A(1,0),即0=1+m,m=-1抛物线y=x2+bx+c都经过点A(1,0),B(3,2).即0=1^2+b+c2=3^2+3*b+cb=-3,c=2即y=x2-3x+2x>

如图,平行于y轴的直线l被抛物线y=12x2+1、y=12x2-1所截.当直线l向右平移3个单位时,直线l被两条抛物线所

抛物线y=12x2+1是y=12x2-1向上平移2个单位长度得到的,即|y1-y2|=2.当直线l向右平移3个单位时,阴影部分的面积是,2×3=6.

(2014•松北区一模)如图,抛物线y=-x2+bx+c与直线y=12x+2交于C、D两点,其中点C在y轴上,点D的坐标

(1)在直线解析式y=12x+2中,令x=0,得y=2,∴C(0,2).∵点C(0,2)、D(3,72)在抛物线y=-x2+bx+c上,∴c=2−9+3b+c=72,解得b=72c=2.∴抛物线的解析

如图,已知直线l1:y=2x+m(m<0)与抛物线C1:y=ax2(a>0)和圆C2:x2+(y+1)2=5都相切,F是

(1)由已知,圆C2:x2+(y+1)2=5的圆心为C2(0,-1),半径r=5.(1分)由题设圆心到直线l1:y=2x+m的距离d=|1+m|22+(−1)2.(3分)即|1+m|22+(−1)2=

如图,计算由曲线y=x2+1,直线x+y=3以及两坐标轴所围成的图形的面积S.

如图,由y=x2+1与直线x+y=3在点(1,2)相交,…(2分)直线x+y=3与x轴交于点(3,0)…(3分)所以,所求围成的图形的面积S=∫10(x2+1)dx+∫31(3−x)dx=(x33+x