如图,点p为等边△ABC内任意一点,PE垂直AC于点E,PF垂直BC于点F

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:09:29
如图,点p为等边△ABC内任意一点,PE垂直AC于点E,PF垂直BC于点F
如图,点P是△ABC内任意一点,PD⊥AB,PE⊥BC,PF⊥AC,垂足分别为D.E.F,

证明:因为AP²=AD²+DP²=AF²+FP²BP²=BE²+EP²=BD²+DP²CP²

如图,在等边△ABC中,AB=2,点P是AB边上任意一点(点P可以与点A重合),过点P作PE⊥BC,垂足为E,过点E作E

设BP=x,在直角三角形PBE中,∠BPE=30°∴BE=12x,则EC=2-12x.在直角△EFC中,∠FEC=30°,∴FC=12EC=1-14x.∴AF=2-FC=2-(1-14x)=1+14x

如图,点P是等边△ABC内的一点,分别连接PA,PB,PC以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.

1)相等∵等边△ABC∴AB=BC,∠ABC=60°∵∠PBQ=60°∴∠ABP=∠CBQ∵BP=BQ∴△ABQ≌△CBQ∴AP=CQ2)直角三角形证明:∵∠PBQ=60°,BP=BQ∴△BPQ是等边

如图,P为等边△ABC内任意一点,连接PA、PB、PC,求证:

解;(1)∵PA+PB>ABPB+PC>BCPC+PA>AC,∴(PA+PB+PB+PC+PC+PA)>AB+BC+AC,∵AB=BC=AC,∴2(PA+PB+PC)>3AB∴PA+PB+PC>32A

如图,已知P是等边△ABC的BC边上任意一点,过P点分别作AB、AC的垂线PE、PD,垂足为E、D.问:△AED的周长与

△AED的周长与四边形EBCD的周长相等.理由如下:在等边△ABC中,∠B=∠C=60°,∵PE⊥AB于E,PD⊥AC于D,∴∠BPE=∠CPD=30°.不妨设等边△ABC的边长为1,BE=x,CD=

如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.

证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC

如图,△ABC是等边三角形,P为三角形内任意一点,边长为1.

(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+

如图,已知等边△ABC的髙为2013,P为△ABC内任意一点,PD垂直AB于D点,PE垂直于E点,试求PD+PE+PF的

AM=PD+PE+PF证明:S△ABC=BC*AM/2等边三角形中三边相等S△ABC=PD*BC/2+PE*AC/2+PF*AB/2=(PD+PE+PF)*BC/2∴BC*AM/2=(PD+PE+PF

如图,P为等边△ABC内任意一点,PA=4,PB=2根号3,PC=2,求S△ABC=

把三角形APC顺时针旋转60度,AC与AB重合,得到一个三角形AP'B连结PP',AB与PP'相交于D,则

如图,点P是△ABC内任意一点,试说明PB+PC

证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC所

如图,P是等边△ABC外接圆BC上任意一点,求证:PA=PB+PC.

证明:在PA上截取PD=PC,∵AB=AC=BC,∴∠APB=∠APC=60°,∴△PCD为等边三角形,∴∠PCD=∠ACB=60°,CP=CD,∴∠PCD-∠DCB=∠ACB-∠DCB,即∠ACD=

如图,已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△A

(1)∵△ABE和△APQ是等边三角形,∴AB=AE,AP=AQ,∠BAE=∠PAQ=∠ABE=∠AEB=60°,∴∠BAE-∠PAE=∠PAQ-∠PAE,∴∠BAP=∠EAQ.在△ABP和△AEQ中

1)如图,在等边△ABC中,BC边上任意取一点P,过点P作AC的平行线,过点C作AB的平行线,两线交于点Q,求证:AP=

1.设QP交AB于点G,利用平行线性质易证△GBP△CPQ为等边△则角PGA=BPQ=120度GQ=AC(平行四边形性质),BG=PG,得AG=QP又GP=BP则△AGP全等△QPB(SAS)则AP=

如图,在等边△ABC中,AB=2,点P是AB边上的任意一点(点P可以与点A重合,但不与点B重合)过点P作PE⊥BC,垂足

(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°AB=AC=BC=2∵PE⊥BC于E∴∠PEB=90°∴△BPE是直角三角形∴BP=2BE同理可证:EC=2FCAF=2AQ∵BP=xAQ=y∴B

如图,已知P是等边△ABC内任意一点,过点P分别向三边作垂线,垂足分别为D,E,F.求证:PD+PE+PF是不变的值

因为没图,设D,E,F分别在AB,BC,CA上,连接PA,PB,PC则△ABC被分为3个小三角形,△PAB,△PBC,△PCA△ABC的面积=△PAB的面积+△PBC的面积+△PCA的面积设△ABC的

已知p是等边△ABC内任意一点,过点P分别向三边做垂线,垂足分别为点D.E.F,试证明PD+PE+PF是不变的值.

证明:由三角形的面积很容易证明.S△ABC=S△PAB+S△PCB+S△PACS△PAB=AB*PD/2S△PCB=BC*PD/2S△PAC=AC*PF/2又:等边三角形AB=BC=CA所以:S△AB

如图,△ABC是等边三角形,O为△ABC内的任意一点,OE‖AB,OF‖AC,分别交BC于点E、F.三角形OEF是等边三

是,因为△ABC是等边三角形,所以∠B=∠C=60°,因为OE‖AB,OF‖AC,所以∠OEF=∠B=60°,∠OFE=∠C=60°,所以△OEF是等边三角形

在等边△ABC中,P为三角形内任意一点,过P作PD⊥BC,PE⊥AB,PF⊥AC,连结PA、PB、PC,

过P做BC平行线GH,设AG=2a则PE+PF=三角形AGH的高=根3/2AG=根3a设PF=xPE=根3a-xAE=2a-((根3a-x))/根3=a+x/根3阴影面积=1/2((根3a-x)(a+

如图,P是等边△ABC内一点,连接PA,PB,PC.以点B为旋转中心将△ABP沿顺时针方向旋转60°得到△BCQ

设PA=3a,PB=4a,PC=5a,则PQ=4a,QC=PA=3a∴PC²=25a²PQ²+CQ²=16a²+9a²=25a²∴

如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC

如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,④分