如图,点p为等边△ABC内任意一点,PE垂直AC于点E,PF垂直BC于点F
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:09:29
证明:因为AP²=AD²+DP²=AF²+FP²BP²=BE²+EP²=BD²+DP²CP²
设BP=x,在直角三角形PBE中,∠BPE=30°∴BE=12x,则EC=2-12x.在直角△EFC中,∠FEC=30°,∴FC=12EC=1-14x.∴AF=2-FC=2-(1-14x)=1+14x
1)相等∵等边△ABC∴AB=BC,∠ABC=60°∵∠PBQ=60°∴∠ABP=∠CBQ∵BP=BQ∴△ABQ≌△CBQ∴AP=CQ2)直角三角形证明:∵∠PBQ=60°,BP=BQ∴△BPQ是等边
解;(1)∵PA+PB>ABPB+PC>BCPC+PA>AC,∴(PA+PB+PB+PC+PC+PA)>AB+BC+AC,∵AB=BC=AC,∴2(PA+PB+PC)>3AB∴PA+PB+PC>32A
△AED的周长与四边形EBCD的周长相等.理由如下:在等边△ABC中,∠B=∠C=60°,∵PE⊥AB于E,PD⊥AC于D,∴∠BPE=∠CPD=30°.不妨设等边△ABC的边长为1,BE=x,CD=
证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
AM=PD+PE+PF证明:S△ABC=BC*AM/2等边三角形中三边相等S△ABC=PD*BC/2+PE*AC/2+PF*AB/2=(PD+PE+PF)*BC/2∴BC*AM/2=(PD+PE+PF
把三角形APC顺时针旋转60度,AC与AB重合,得到一个三角形AP'B连结PP',AB与PP'相交于D,则
证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC所
证明:在PA上截取PD=PC,∵AB=AC=BC,∴∠APB=∠APC=60°,∴△PCD为等边三角形,∴∠PCD=∠ACB=60°,CP=CD,∴∠PCD-∠DCB=∠ACB-∠DCB,即∠ACD=
(1)∵△ABE和△APQ是等边三角形,∴AB=AE,AP=AQ,∠BAE=∠PAQ=∠ABE=∠AEB=60°,∴∠BAE-∠PAE=∠PAQ-∠PAE,∴∠BAP=∠EAQ.在△ABP和△AEQ中
1.设QP交AB于点G,利用平行线性质易证△GBP△CPQ为等边△则角PGA=BPQ=120度GQ=AC(平行四边形性质),BG=PG,得AG=QP又GP=BP则△AGP全等△QPB(SAS)则AP=
(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°AB=AC=BC=2∵PE⊥BC于E∴∠PEB=90°∴△BPE是直角三角形∴BP=2BE同理可证:EC=2FCAF=2AQ∵BP=xAQ=y∴B
因为没图,设D,E,F分别在AB,BC,CA上,连接PA,PB,PC则△ABC被分为3个小三角形,△PAB,△PBC,△PCA△ABC的面积=△PAB的面积+△PBC的面积+△PCA的面积设△ABC的
证明:由三角形的面积很容易证明.S△ABC=S△PAB+S△PCB+S△PACS△PAB=AB*PD/2S△PCB=BC*PD/2S△PAC=AC*PF/2又:等边三角形AB=BC=CA所以:S△AB
是,因为△ABC是等边三角形,所以∠B=∠C=60°,因为OE‖AB,OF‖AC,所以∠OEF=∠B=60°,∠OFE=∠C=60°,所以△OEF是等边三角形
过P做BC平行线GH,设AG=2a则PE+PF=三角形AGH的高=根3/2AG=根3a设PF=xPE=根3a-xAE=2a-((根3a-x))/根3=a+x/根3阴影面积=1/2((根3a-x)(a+
设PA=3a,PB=4a,PC=5a,则PQ=4a,QC=PA=3a∴PC²=25a²PQ²+CQ²=16a²+9a²=25a²∴
如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,④分