如图,点p为正方形ABC的的对角线bd上的任意一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:14:40
(1)将三角形补成一个矩形S△ABC=S矩形BEFG-S△BEC-S△CFA-S△AGB &n
P1(1,1)P2(2,0)=P3P4(3,1)P5(5,1)P6(6,0)=P7P8(7,1)…每4个一循环,可以判断P2009在502次循环后与P1一致,坐标应该是(2009,1)故答案为:(20
因为三角形ABP旋转60度以后得到三角形QDB所以角ABQ=60度,角ABP=角QDB,BP=BD,PA=QD因为角BAC=120度所以角QAB=60度又因为角ABQ=60度所以三角形ABQ是等边三角
再问:对称中心是什么?再答:
选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,
可画三个平行四边形(三种颜色). 再问:确定是中心对称吗?再答:平行四边形一定是中心对称图形。再问:大哥,你太有才了!
1、长方形面积=4×8=32分别减去边上的3个直角三角形的面积1/2×2×3=3、1/2×4×6=12、1/2×1×8=4P=32-3-12-4=132、直角三角形
直接用余弦定理好了再问:直角三角形是哪个
连接PD①∵AB=ADAP=AP∠BAP=∠DAP=45°∴△APB≌△APD∴∠ABP=∠ADP∠PBC=∠PDF∵PE⊥PB∴在四边形BCEP中∠PBC+∠PEC=180°∵∠PEF+∠PEC=1
第一个问题:∵ABCD是正方形,又EF⊥AD、GH⊥AB,∴容易证得:ABFE、ADHG都是矩形,∴BF=AE、DH=AG,又AG=AE,∴BF=DH.∵ABCD是正方形,∴AB=AD、∠ABF=∠A
x+y=大正方形边长因为pqrs是正方形,四个三角形全等由此推出答案.
解题思路:(1)∵四边形ABCD是正方形,∴∠B=∠C=90°∵PQ⊥AP,∴∠APB+∠QPC=90°,∠APB+∠BAP=90°∴∠BAP=∠QPC∴△ABP∽△PCQ解题过程:解:(1)∵四边形
过D作DG∥EF交AB于G,交AB于H;设EF交AP于I.∵点A和点P关于EF对称∴∠AIF=90∵PG∥EF∴∠AHP=90∴∠APH+∠PAH=90∵∠PAH+∠BAP=90∴∠APH=∠BAP∵
(1)∵CP平分∠ACE,BP平分∠ABC∴∠ABC=2∠PBC,∠ACE=2∠PCE∵∠PCE=∠PBC+∠P∴2∠PCE=2∠PBC+2∠P∴∠ACE=∠ABC+2∠P∵∠ACE=∠ABC+∠A∴
1)已知DQ=x,AP=x,设矩形ABCD的面积为S1,三角形APQ的面积为S2,则有S1=10*10=100S2=1/2*AP*AQ+=1/2*(10-x)x,所以S=S1-S2=100-5X+1/
当P在边AB上时,△APC的面积=1/2,则高BC=2,所以底边AP=1/2当P在边BC上时,△APC的面积=1/2,则高AB=2,所以底边PC=1/2.所以AP=4-1/2=7/2
BQ=BC/2=1,即BQ为定值.∵点B和D关于AC对称,则PD=PB.∴PB+PQ=PD+PQ,故当点P在线段DQ上时,PD+PQ最小.DQ=√(CQ²+CD²)=√(1+4)=
∵P点在平面ABCD内的射影为A∴PA⊥平面ABCD则PA⊥CD∵四边形ABCD为正方形∴CD⊥AD则CD⊥平面PAD∵CD∈平面PCD∴平面PCD⊥平面PAD则二面角C-PD-A为直角
过F作FG⊥AB于G.易证△EFG≌△PAB,得EF=PA=13cm