如图,点P为正方形ABCD对角线AC上任意一点,PE⊥AB,PF⊥BC,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:01:34
如图,点P为正方形ABCD对角线AC上任意一点,PE⊥AB,PF⊥BC,
如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

正方形ABCD,边长为4,E是AB边上的一点,AE为3,P是对角线上的移动点,问PE+PB的最小值是多少

因为P在正方形对角线上,所以可以证明三角形DAP和三角形BAP全等所以PB=PD于是PB+PE就转化成PD+PE的最小值两点之间直线最短咯于是就是D、P、B三点在同一直线上时取到最小值就相当于是求直角

如图,已知正方形ABCD的边长为4,对称中心为点P,

再问:对称中心是什么?再答:

如图,已知点P为正方形ABCD内一点,连结PA、PB、PC.

1、(1)扫过区域是个以a为半径,圆心角为90度的扇形,所以面积是πa^2/4.(2)由已知,P'B=PB=4,P'C=2,且∠PBP'=90,所以∠PP'B=45,PP'=4√2;又因为∠BP'C=

如图,P为正方形ABCD边BC上一动点,连接AP,\x05\x05\x05\x05\x05\x05\x05

要加分啊,是大连中山区的期末考试试题吗?

如图,O为正方形ABCD对角线上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.

证明:(1)连OM,过O作ON⊥CD于N;∵⊙O与BC相切,∴OM⊥BC,∵四边形ABCD是正方形,∴AC平分∠BCD,∴OM=ON,∴CD与⊙O相切.(2)∵四边形ABCD为正方形,∴AB=CD=1

如图,正方形ABCD的面积为12,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE

使P点是BE与AC的交点则可,这时PE+PD[(最小值)]=BE=AB=√(12)=2√(3),证明:连接BD,则AC是BD的垂直平分线,∴PD=PB,∴PD+PE=PB+PE=BE,在AC上任取异于

如图,正方形ABCD的边长为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

如图,正方形ABCD的面积为10,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

∵ABCD是正方形∴AC⊥BD AB=AD=A=BC=CD=√10∵△ABE是等边三角形∴AB=BE=AE=√10要使PD+PE的和最小以AC为对称轴,做D的对称点,由于BD⊥AC所以D的对

如图,正方形ABCD的边长为4,△ABE是等边三角形,点E在正方形ABCD中,在对角线AC上存有一点P

不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+

如图,边长为1的正方形ABCD中,P为正方形内一动点,过点P且垂直于正方形两边的线段为

第一个问题:∵ABCD是正方形,又EF⊥AD、GH⊥AB,∴容易证得:ABFE、ADHG都是矩形,∴BF=AE、DH=AG,又AG=AE,∴BF=DH.∵ABCD是正方形,∴AB=AD、∠ABF=∠A

如图,正方形ABCD的边长为a.在AB、CD上分别取点P、S,连接PS,

x+y=大正方形边长因为pqrs是正方形,四个三角形全等由此推出答案.

如图,以正方体的三条棱所在的直线为坐标轴,建立空间直角坐标系Oxyz,点P在正方形的对角

设正方体边长为a,P(x1,x1,z1),Q(x2,a,a)如图,则ΔGP'P和ΔGEA相似,∴GP‘/EG=P'P/AE,即z1=P'P=√2(a-x1)*a/(√2a)=a-x1∴P(x1,x1,

已知如图,O是正方形ABCD对角线上一点,以点O为圆心,OA长为半径的圆O与BC相切与点M,与

∵BC、CD是切线,∴∠ONC=∠ONC=90°,∵ABCD是正方形,∴∠BCD=90°,∴四边形OMCN是矩形,又OM=ON,∴矩形OMCN是正方形,设圆半径为R,OA=OM=CM=R,∴OC=√2

如图,正方形ABCD的边长为10cm,点P从点A出发沿AB向点B运动,点Q

1)已知DQ=x,AP=x,设矩形ABCD的面积为S1,三角形APQ的面积为S2,则有S1=10*10=100S2=1/2*AP*AQ+=1/2*(10-x)x,所以S=S1-S2=100-5X+1/

1、如图,将边长为2cm的正方形ABCD沿其对角

1.阴影部分为平行四边形,高为a'd,底为aa'=x,x(2-x)=1,x=1再问:那第二题呢?再答:没说是什么类型方程吗再问:方程是x^2-2bx+a-4b=0再答:2.根的判别式化简后b^2+4b

如图,已知正方形abcd的边长为2,动点p在正方形abcd的边ab或bc上,它从a点出发,沿a→b→c运动.当点p经过的

当P在边AB上时,△APC的面积=1/2,则高BC=2,所以底边AP=1/2当P在边BC上时,△APC的面积=1/2,则高AB=2,所以底边PC=1/2.所以AP=4-1/2=7/2

如图,在四棱锥P-ABCD中,四边形ABCD为正方形,P点在平面ABCD内的射影为A,则二面角

∵P点在平面ABCD内的射影为A∴PA⊥平面ABCD则PA⊥CD∵四边形ABCD为正方形∴CD⊥AD则CD⊥平面PAD∵CD∈平面PCD∴平面PCD⊥平面PAD则二面角C-PD-A为直角