如图,点P为△ABC内的一点,分别以AB,BC,AC为对称轴,作点P的对称点D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:20:25
如图所示:.
因为三角形ABP旋转60度以后得到三角形QDB所以角ABQ=60度,角ABP=角QDB,BP=BD,PA=QD因为角BAC=120度所以角QAB=60度又因为角ABQ=60度所以三角形ABQ是等边三角
可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来
AB+AC>PB+PC理由:因为:延长BP交AC于D.AB+AD>BD=PB+PD因为:PD+CD>PC两式相加所以:AB+AD+PD+CD>PB+PD+PC销去PD所以:AB+(AD+CD)>PB+
选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,
延长BP交AC于D,在△ABD中AB+AD>PB+PD(△两边之和大于第三边)(1)在△PCD中PD+CD>PC(同上)(2)(1)+(2),得AB+AD+PD+CD>PB+PD+PC即:AB+AC>
解;(1)∵PA+PB>ABPB+PC>BCPC+PA>AC,∴(PA+PB+PB+PC+PC+PA)>AB+BC+AC,∵AB=BC=AC,∴2(PA+PB+PC)>3AB∴PA+PB+PC>32A
方法1:延长BP与AC交于点Q根据三角形两边和大于第三边三角形ABP,AB+AQ>BQ三角形PQC,QC+PQ>PC相加得AB+AQ+QC+PQ>BQ+PCAB+(AQ+QC)+PQ>(BP+PQ)+
将三角形ABP绕B点旋转60度使AB与BC重合.则P点移动到P'点.又旋转性可知三角形ABP与三角形CBP'全等.所以,BP'=BP=4,CP'=AP=2根号3,角ABP=角CBP'.连接PP',因为
证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
AM=PD+PE+PF证明:S△ABC=BC*AM/2等边三角形中三边相等S△ABC=PD*BC/2+PE*AC/2+PF*AB/2=(PD+PE+PF)*BC/2∴BC*AM/2=(PD+PE+PF
应该是边长为4CM的“正”三角形吧∵EF‖AB,GH‖BC,MN‖AC∴四边形AMPE,BGPF,CNPH都是平行四边形AM=EP,AE=MP,BG=FP,BF=GP,CN=HP,CH=NP且△ABC
将△BPC绕B点逆时针旋转60°,得△BDC',因为∠ABC=60°,所以C'与A重合则有△BPC≌△BDA,∠BPC=∠BDA可知△BEP为等边△,故∠BDP=60°PD=BP=4,而PA=5,AD
证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC所
AB+AC>PB+PC理由:因为:延长BP交AC于D.AB+AD>BD=PB+PD因为:PD+CD>PC两式相加所以:AB+AD+PD+CD>PB+PD+PC销去PD所以:AB+(AD+CD)>PB+
因为没图,设D,E,F分别在AB,BC,CA上,连接PA,PB,PC则△ABC被分为3个小三角形,△PAB,△PBC,△PCA△ABC的面积=△PAB的面积+△PBC的面积+△PCA的面积设△ABC的
如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,④分
∵等边三角形ABC,∴AB=BC=AC,∵∠1=∠2,BP=BA=BC,BD=BD,∴△DPB≌△DBC,∴∠BCD=∠P,DP=DC,又∵AD=BD,BP=BA=AC,∴△DBP≌△ADC,∴∠AC