如图,点o在正方形abcd的对角线的交点,分别延长od
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 09:59:37
正方形ABCD的面积为64∴边长=8以AC为轴做点D的对称点F易证 点F与点B重合所以 DP = BP所以 DP&
如图:延长FO交AB于点G,则点G是切点,OD交EF于点H,则点H是切点,∵ABCD是正方形,点O在对角线BD上,∴DF=DE,OF⊥DC,∴GF⊥DC,∴OG⊥AB,∴OG=OH=HD=HE=AE,
(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E
因为正方形ABCD对角线AC和BD所以AC=BDAB=AD=DC=BCAO=BO=CO=DO因为点E,F,G,H分别是AO,BO,CO,DO的中点所以EG,FH为四边形的对角线EO=FO=GO=HOE
简单因为OBC和OCD为等腰三角形E为BC中点所以角OEC=90所以角OFC=360-270=90因为OCD与等腰三角形三线合一,F为CD中点
因为AC,BD为正方形ABCD的对角线则AC⊥BDAO=CO角BAC=45º因为EG⊥AC三角形AEG为等腰直角三角形AG=EG因为EF⊥BD所以EFOG为矩形EF=OG因此EG+EF=OG
好评给我把再答:再问:答案拿来再答:发了再问:采纳了
(1)连结OB,OC.易知OB=OC,∠BOC=90°,∠OBM=∠OCN=45°而∠EOG=90°∴∠BOM=∠BOC-∠EOC=∠EOG-∠EOC=∠CON∴△OBM≌△OCN(ASA)∴BM=C
(Ⅰ)证明:取BE1=CE,连接EE1和AE1∴EE1=BC,EE1∥BC,BC=AD,BC∥AD,∴EE1=AD,EE1∥AD.∴四边形AE1ED为平行四边形,∴AE1∥DE,在矩形A1ABB1中,
(1)PE=PF.证明:过点P作PM垂直于AB于M,PN垂直于BC于N,于是在直角三角形PEM和PFN中,
只要是正方形都是相似的,所以只要证EFGH是正方形首先E、F都是中点,可得∠BAE=∠FEO,∠ABF=∠EFO同理,可得图中类似角都相等由等式性质可得∠HEF=∠DAB同理四个角都是直角下面要证四条
是4.设半圆与AB.AD交于X,Y.过o作AB,AD的垂线.交AD.AB于Q.P,因为原心角是90,角QOP是90,所以角XOP=角YOQ因为OP=OQ,角OPA=角OQD,.所以三角形XOP全等于Y
这题只要证明N为AB中点,就可得出那2个结论可以先设MC=a,DC=2a,MD=根号5a我用:√5a来表示令NC与MD交点为P,则CP=2√5a/55分之2倍根号5可求出MP=√5a/5然后ΔMPC相
解对称理由如下连接AC,∵O是正方形ABCD的对称中心∴OA=OC,AB∥CD∴∠OAH=∠OCM∵∠AOH=∠COM∴△AOH≌△COM(ASA)∴OH=OM∴△AO
1.连接OB、OC,则OB=OC,角BOE=90度-角EOC=角GOC,OE=OG,三角形BOE和COG全等,BE=CG.2.在旋转过程中四边形OMCN的面积不发生变化.面积=1/4*S正方形ABCD
分析你听哦设OE交AB于M,OG交BC于N,不难证明△OMB≌△ONC其实在转动过程中重叠部分的面积始终=△OBC的面积=正方形面积的4分之1所以(1)y=4x图像是过原点和(1,4)一条射线,原点除
(3)作EH垂直BD于点H,因为BE是角DBC的平分线,角BCD=90,所以,EH=CE,BH=BC.由(1)、(2)可知,BE=DF=2DG=2根号2.设AB=X,CE=Y,则DH=BD-BH=X(
(1)等边直角三角形,高1/2a,面积=1/4a²(2)90X+45°,(X是整数)面积=1/4a²(3)相同,由几何三角形2角度数相等及两角相邻边相等,得出该两三角形相同,即可将
证明:如图,(1)∵ABCD-A1B1C1D1为正方体,∴BC1⊥B1C,DC⊥面BCC1,∴DC⊥BC1,又DC∩B1C=C,∴BC1⊥平面B1CD,又DO⊂面B1CD,∴BC1⊥DO;(2)连结A