如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的圆O与BC切于点D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 02:59:17
(1)证明:∵⊙O与BC相切于点D,∴OD⊥BC,∴∠ODB=90°(1分)∵∠ACB=90°,∴∠ODB=∠ACB(2分)∴OD∥AC(3分)∴∠1=∠3(4分)∵OD=OA,∴∠1=∠2(5分)∴
(1)连接OE,∵⊙O与BC相切于E,∴OE⊥BC,∵AB⊥BC,∴AB∥OE,∴∠BAE=∠OEA,∵OA=OE,∴∠1=∠OEA,∴∠1=∠BAE,即AE平分∠CAB.(2)2∠1+∠C=90°,
设⊙O与AB相切于点E,连接OE,则OE⊥AB.∵∠C=90°,AC=6,BC=8,∴AB=10,∴AE=10+6−82=4.∵⊙O为△ABC的内切圆,点D是斜边AB的中点,∴AD=5,则DE=1,∴
我画了图,你对照图看看.∠FEA=∠EAE=∠ABE说明∠OEF为直角就行了
(1)证明:在Rt△ABC中,∠BAC=90°,∠C=30°,D为BC的中点,∴∠ABD=60°,AD=BD=DC.∴△ABD为等边三角形.∴O点为△ABD的中心(内心,外心,垂心三心合一).连接OA
(1)连接OE,∵AC是⊙O的切线,∴OE⊥AC,∵AD:BD=1:2,且OE:BD=1:2,∴OE=OD=AD,∴OE:AO=1:2,在Rt△AOE中,∵sinA=OEAO,OE:AO=1:2,∴s
连接OE,OF,OG;∵∠C=90°,AC=6,BC=8,∴AB=10,∵⊙O为△ABC的内切圆,∴OG⊥BC,OF⊥AC,OE⊥AB,AF=AE,CF=CG,∴∠OGC=∠OFC=∠OED=90°;
(1)∵AB为直径,∴∠ADB=90°,即BD⊥AC.在Rt△ADB中,∵AD=3,BD=4,∴由勾股定理得AB=5.∵∠ABC=90°,BD⊥AC,∴△ABD∽△ACB,∴BDAD=BCAB,即43
AO=OD=4/2=2BO/AB=OD/AC=2/3BO/(BO+2)=2/3BO=4AB=4+2=6BC=√(6^2-3^2)=3√3AO/AB=DC/BC2/6=DC/3√3DC=√3AD=√(3
(1)证明:连结CM、OM,如图①,∵AC为⊙O的直径,∴∠AMC=90°,∵点N是边BC的中点,∴NM=NC,∴∠1=∠2,∵OM=OC,∴∠3=∠4,∴∠1+∠4=∠2+∠3,即∠OMN=∠OCN
(1)证明:连接OD,∵BC是⊙O的切线,∴OD⊥BC,∵AC⊥BC,∴OD∥AC,∴∠2=∠3;∵OA=OD,∴∠1=∠3,∴∠1=∠2,∴AD平分∠BAC;(2)∵BC与圆相切于点D.∴BD2=B
证明:(1)在Rt△ABC中,∠BAC=90°,∠C=30°,D为BC的中点,∴∠ABD=60°,AD=BD=DC.∴△ABD为等边三角形.∴O点为△ABD的中心(内心,外心,垂心三心合-).连接OA
再问:第二问呢?再问:我也不会再答:再问:太感谢你了!你救了我啊!再答:没事,我也在学切线再问:呵呵再问:我也才学,就是搞不懂再答:多做一点题就好了再问:诶呀。。。。要做题,我本来就脑子笨笨的,额滴个
(1)证明:∵AB切⊙O于D,∴OD⊥AB,∵Rt△ABC中,∠C=90°,在Rt△AOC和Rt△AOD中,OC=ODAO=AO∴Rt△AOC≌Rt△AOD(HL).(2)设半径为r,在Rt△ODB中
(1)在三角形AOE中,因为OA=OE,所以角OAE=角OEA,因为BC与圆O相切,所以OE垂直于BC,则角BAE=角OEA,所以角BAE=角OAE,则AE平分角CAB(2)没图,角1在哪
你好楼主!这道题目的关键点是如何求弧长一般来说我们求弧长是不容易的但是如果我们知道弧所对的角就能轻易求出了·例如本题正确做出图形后我们很容易发现其角度是90度自然我们只要求出圆的周长就可以得出弧长为圆
(1)证明:连接DE,OD.∵BC相切⊙O于点D,∴∠CDA=∠AED.(1分)AE为直径,∠ADE=90°,AC⊥BC,∠ACD=90°,∴∠DAO=∠CAD,∴AD平分∠BAC.(2)①∵AE为直
(1)证明:连接OE,∵BC与⊙O相切于点E,∴OE⊥BC,即∠OEB=90°.∴∠OEB=∠ACB=90°.∴OE∥AC.∴∠F=∠OED.∵OE=OD,∴∠ODE=∠OED.∴∠F=∠ODE=∠A
连接OD,OE,则OD⊥AC,过点E作EF⊥OD于F.在Rt△OEF中,OE=2,∠OEF=30°.∴OF=1,EF=3.∴S阴=S梯形OECD-S扇形EOD=12(1+2)×3-60π×22360=
解题思路:(1)连AD,由AB为直径,根据圆周角定理得推论得到∠ADB=90°,从而有∠C+∠EAD=90°,∠EDA+∠CDE=90°,而∠CAB=90°,根据切线的判定定理得到AC是⊙O的切线,而