如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的圆O与BC切于点D

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 02:59:17
如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的圆O与BC切于点D
(2011•漳州质检)如图,已知Rt△ABC,∠ACB=90°,点O为斜边AB上一点,以点O为圆心、OA为半径的圆与BC

(1)证明:∵⊙O与BC相切于点D,∴OD⊥BC,∴∠ODB=90°(1分)∵∠ACB=90°,∴∠ODB=∠ACB(2分)∴OD∥AC(3分)∴∠1=∠3(4分)∵OD=OA,∴∠1=∠2(5分)∴

(2013•常州模拟)如图,已知点O为Rt△ABC斜边上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E,与AC相

(1)连接OE,∵⊙O与BC相切于E,∴OE⊥BC,∵AB⊥BC,∴AB∥OE,∴∠BAE=∠OEA,∵OA=OE,∴∠1=∠OEA,∴∠1=∠BAE,即AE平分∠CAB.(2)2∠1+∠C=90°,

如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA

设⊙O与AB相切于点E,连接OE,则OE⊥AB.∵∠C=90°,AC=6,BC=8,∴AB=10,∴AE=10+6−82=4.∵⊙O为△ABC的内切圆,点D是斜边AB的中点,∴AD=5,则DE=1,∴

如图,以Rt△ABC的直角边AB为直径的圆O交斜边BC于点E,F是AC的中点,求证EF是圆O的切线

我画了图,你对照图看看.∠FEA=∠EAE=∠ABE说明∠OEF为直角就行了

如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切

(1)证明:在Rt△ABC中,∠BAC=90°,∠C=30°,D为BC的中点,∴∠ABD=60°,AD=BD=DC.∴△ABD为等边三角形.∴O点为△ABD的中心(内心,外心,垂心三心合一).连接OA

如图,在Rt△ABC中,∠C=90°,O是斜边AB上一点.以O为圆心,OB为半径的圆与BC交于点F,与AB交于点D,与A

(1)连接OE,∵AC是⊙O的切线,∴OE⊥AC,∵AD:BD=1:2,且OE:BD=1:2,∴OE=OD=AD,∴OE:AO=1:2,在Rt△AOE中,∵sinA=OEAO,OE:AO=1:2,∴s

(2014•邢台二模)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的

连接OE,OF,OG;∵∠C=90°,AC=6,BC=8,∴AB=10,∵⊙O为△ABC的内切圆,∴OG⊥BC,OF⊥AC,OE⊥AB,AF=AE,CF=CG,∴∠OGC=∠OFC=∠OED=90°;

如图,已知Rt△ABC,∠ABC=90°,以直角边AB为直径作⊙O,交斜边AC于点D,连接BD.

(1)∵AB为直径,∴∠ADB=90°,即BD⊥AC.在Rt△ADB中,∵AD=3,BD=4,∴由勾股定理得AB=5.∵∠ABC=90°,BD⊥AC,∴△ABD∽△ACB,∴BDAD=BCAB,即43

如图,在Rt△ABC中,∠C=90度,点E在斜边AB上,以AE为直径的圆O与BC相切与点D 若AC=3,AE=4 求AD

AO=OD=4/2=2BO/AB=OD/AC=2/3BO/(BO+2)=2/3BO=4AB=4+2=6BC=√(6^2-3^2)=3√3AO/AB=DC/BC2/6=DC/3√3DC=√3AD=√(3

(2014•昆都仑区一模)如图,在Rt△ABC中,∠C=90°,以边AC为直径作⊙O,与斜边AB交于点M,点N是边BC的

(1)证明:连结CM、OM,如图①,∵AC为⊙O的直径,∴∠AMC=90°,∵点N是边BC的中点,∴NM=NC,∴∠1=∠2,∵OM=OC,∴∠3=∠4,∴∠1+∠4=∠2+∠3,即∠OMN=∠OCN

如图,已知点E在Rt△ABC的斜边AB上,以AE为直径的○O与直角边BC相切于点D.(1)求证:AD平分∠BAC(2)若

(1)证明:连接OD,∵BC是⊙O的切线,∴OD⊥BC,∵AC⊥BC,∴OD∥AC,∴∠2=∠3;∵OA=OD,∴∠1=∠3,∴∠1=∠2,∴AD平分∠BAC;(2)∵BC与圆相切于点D.∴BD2=B

如图,在Rt三角形ABC中,斜边BC=12,角C=30,D为BC的中点,三角形ABD的外接圆圆O与AC交于F点,过A作圆

证明:(1)在Rt△ABC中,∠BAC=90°,∠C=30°,D为BC的中点,∴∠ABD=60°,AD=BD=DC.∴△ABD为等边三角形.∴O点为△ABD的中心(内心,外心,垂心三心合-).连接OA

如图以rt△abc的直角边ab为直径作圆o,与斜边AC交于点D,E为BC边上中点,连接DE,求证:DE是圆O的切线,当∠

再问:第二问呢?再问:我也不会再答:再问:太感谢你了!你救了我啊!再答:没事,我也在学切线再问:呵呵再问:我也才学,就是搞不懂再答:多做一点题就好了再问:诶呀。。。。要做题,我本来就脑子笨笨的,额滴个

如图,Rt△ABC中,∠C=90°,O为直角边BC上一点,以O为圆心,OC为半径的圆恰好与斜边AB相切于点D,与BC交于

(1)证明:∵AB切⊙O于D,∴OD⊥AB,∵Rt△ABC中,∠C=90°,在Rt△AOC和Rt△AOD中,OC=ODAO=AO∴Rt△AOC≌Rt△AOD(HL).(2)设半径为r,在Rt△ODB中

如图,已知点O为Rt三角形ABC斜边AC上一点,以O为圆心,OA长为半径的圆O与BC相切于点E,与AC相交于点D,连接A

(1)在三角形AOE中,因为OA=OE,所以角OAE=角OEA,因为BC与圆O相切,所以OE垂直于BC,则角BAE=角OEA,所以角BAE=角OAE,则AE平分角CAB(2)没图,角1在哪

圆question如图,已知Rt△ABC的斜边AB长为35,O点在AB上,OB=20,○O分别切BC,AC于D,E两点,

你好楼主!这道题目的关键点是如何求弧长一般来说我们求弧长是不容易的但是如果我们知道弧所对的角就能轻易求出了·例如本题正确做出图形后我们很容易发现其角度是90度自然我们只要求出圆的周长就可以得出弧长为圆

(2010•内江)如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC相切于点D.

(1)证明:连接DE,OD.∵BC相切⊙O于点D,∴∠CDA=∠AED.(1分)AE为直径,∠ADE=90°,AC⊥BC,∠ACD=90°,∴∠DAO=∠CAD,∴AD平分∠BAC.(2)①∵AE为直

已知:如图,Rt△ABC中,点D在斜边AB上,以AD为直径的⊙O与BC相切于点E,连接DE

(1)证明:连接OE,∵BC与⊙O相切于点E,∴OE⊥BC,即∠OEB=90°.∴∠OEB=∠ACB=90°.∴OE∥AC.∴∠F=∠OED.∵OE=OD,∴∠ODE=∠OED.∴∠F=∠ODE=∠A

如图,Rt△ABC中,∠C=90°,∠A=30°,点O在斜边AB上,半径为2的⊙O过点B,切AC边于点D,交BC边于点E

连接OD,OE,则OD⊥AC,过点E作EF⊥OD于F.在Rt△OEF中,OE=2,∠OEF=30°.∴OF=1,EF=3.∴S阴=S梯形OECD-S扇形EOD=12(1+2)×3-60π×22360=

如图,AB为⊙O的直径,以AB为直角边作Rt△ABC,∠CAB=90°,斜边BC与⊙O交于点D,过点D作⊙O的切

解题思路:(1)连AD,由AB为直径,根据圆周角定理得推论得到∠ADB=90°,从而有∠C+∠EAD=90°,∠EDA+∠CDE=90°,而∠CAB=90°,根据切线的判定定理得到AC是⊙O的切线,而