如图,点E是ABC的内心,AE交BC于点F,DF=2,AF=4,求EF的长
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:18:04
E是BC弧中点,连结CE,BE=IE=CE,《BCE=〈BAE(同弧圆周角相等),〈BAE=〈EAC,〈EAC=〈DCE,〈DEC=〈AEC(公用),△CDE∽△ACE,CE/AE=DE/CE,CE^
连接DB,DC,已知BC=m,AD=n1.若动点D在BC的下方,求四边形ABCD的面积值2.若动点D在BC的下方,1中的结论是否成立,说明理由如图,若动点D在BC的上方,S四边形ABDC=S△ABC-
E是三角形ABC的内心->AE平分角CAB-》角CAD=角DAB-》DC=DBE是三角形ABC的内心-》BE平分角CBA-》角CBE=角EBA角DEB=角EBA+角DAB角DBE=角CBE+角DBC角
内心是三角形三条角平分线的交点,所以AD,BE分别是角BAC和ABC的角平分线;角BAD=DAC,则弧BD=CD,即弦BD=CD;角DBC=DAC(同弧圆周角)角DBE=DBC+CBE=DAC+CBE
证明:连接BE∵E是△ABC的内心∴∠ABE=∠CBE,∠BAD=∠CAD∴弧BD=弧CD∴BD=CD∵∠BED=∠BAD+∠ABE,∠EBD=∠EBC+∠CBD又∵∠CBD=∠CAD=∠BAE∴∠D
已知,E是三角形ABC的内心,可得:∠DAB=∠DAC,∠EBA=∠EBC.因为,∠DBE=∠DBC+∠EBC=∠DAC+∠EBC=∠DAB+∠EBA=∠DEB,所以,DB=DE.因为,∠DAB=∠D
①BE=IE 证明:连接BI.∵I为△ABC内心,∴∠1=∠2,∠3=∠5,∵∠3=∠4,∴∠4=∠5,∵∠BIE=∠2+∠5,∠EBI=∠1+∠4,∴∠BIE=∠E
证明:(1)∵AC=BC∴∠CAB=∠CBA,又∵E是内心,∴∠1=∠2=∠3=∠4.∴BE=AE;(2)∵∠BED=∠1+∠3,∠EDB=∠2+∠5,又∵∠5=∠4,∴∠BED=∠EDB,∴BD=D
(1)由E是△ABC内心,∴AE,BE,CE是三内角平分线交点.∴∠BAD=∠CAD,∴BD=CD(同圆或等圆中,圆周角相等,所夹弦相等).(2)∵∠BAD=∠CAD=∠CBD由∠BED=1/2∠BA
取AB中点F,连接EF,EF为中位线所以:EF平行AD,EF平行BC因为:AE平分角BAD所以:∠DAE=∠EAF=∠AEF所以:AF=EF,又F为AB中点所以:EF=FB所以:∠FEB=∠FBE,又
(1)由E是△ABC内心,∴AE,BE,CE是三内角平分线交点.∴∠BAD=∠CAD,∴BD=CD(同圆或等圆中,圆周角相等,所夹弦相等).(2)∵∠BAD=∠CAD=∠CBD由∠BED=1/2∠BA
(1)证明:连接IB.∵点I是△ABC的内心,∴∠BAD=∠CAD,∠ABI=∠IBD.又∵∠BIE=∠BAD+∠ABI=∠CAD+∠IBD=∠IBD+∠DBE=∠IBE,∴BE=IE.(2)在△BE
因为E是内心,所以EA、EB分别为∠A和∠B的角平分线,即∠BAD=∠DAC=∠A/2,∠ABE=∠EBC=∠B/2所以BD=CD因为∠DAC和∠DBC对应同一段外接圆弧CD,所以∠DBC=∠DAC=
已知I是三角形ABC的内心,故∠IAB=∠IAC,∠IBA=∠IBC.又∠CBE=∠CAE(圆周角相等),故∠CBE=∠IAB.又因∠EBI=∠CBE+∠IBC,∠EIB=∠IAB+∠IBA,故∠EB
证明:连接CICE因为I是三角形ABC的内心所以AE平分角BACCI平分角ACB所以角BAE=角CAE角ACI=角BCI因为角BAE=角BCE=弧BE/2因为角CIE=角ACI+角CAE因为角ECI=
延长BI,交圆I于F∵I为三角形的内心∴∠BIE=2∠BAE=2∠EAC,∠FBC=∠FBA∴∠FBC=1/2∠AIF=1/2∠BIE又同弧所对圆周角相等∴∠EBC=∠EAC=1/2∠BIE∴∠BIE
(1)连接BE,∵E为内心,∴AE,BE分别为∠BAC,∠ABC的角平分线,∴∠BED=∠BAE+∠EBA,∠EBA=∠EBC,∠BAE=∠EAC,∴∠BED=∠EBC+∠EAC,∠EBD=∠EBC+
证明:∵三角形的内心是角平分线的交点∴∠BAD=∠CAD∴BD=CD(等角对等弦)∵∠CED=∠ACE+∠CAD∠DCE=∠BCE+∠BCD∠ACE=∠BCE∠CAD=∠BAD=∠BCD(等弧对等角)
内心是角平分线的交点.1ReBAD(角BAD的角度)=ReCAD,所以弦BD=CD2连接BEReEBD=ReEBC+ReDBC=ReEBA+ReDAC(一个是因为E是内心,BE是角平分线;另一个是因为