如图,点E和点F分别是正方形ABCD中BC边和CD边上的点,且角EAF=45°,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:39:44
四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以菱形
因为:点E、F分别是AB和BC的中点,正方形ABCD的边长是5厘米所以:BE=CF=2.5cm又因为:BC=CD=5,角B=角DCF=90°所以三角形EBC全等三角形FCD所以角CEB=角DFC又因为
1:延长EF交正方形外交平分线CP于点P,是判断AE与EP的大小关系,并说明理由\x0d2:在AB边上是否存在有一点M,使得四边形DMEP是平行四边形,若存在,请证明,若不存在,请说明理由各位速度
证明:(1)∵连接AB,∵∠B与∠C是弧AE所对的圆周角,则∠B=∠C,∵∠B=∠D,(同弧所对圆周角相等)∴∠C=∠D.∴CE∥DF.(2)∵点M是CD的中点,∴CM=DM.在△DFM和△CEM中:
很高兴为您解答!分析:(1)在AB上取BH=BE,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECP,从而得到AE=EP;(2)先证△DAM≌△ABE,进而可得四边形DMEP是平行四边形
(1)AE=EP.证明:设AB=X,BE=Y,则EC=X-Y.作PG垂直BC的延长线于G,易知PG=CG,设∠BAE+∠AEB=90°=∠AEB+∠PEC,则:∠BAE=∠PEC;又∠B=∠PGE=9
因为正方形ABCD对角线AC和BD所以AC=BDAB=AD=DC=BCAO=BO=CO=DO因为点E,F,G,H分别是AO,BO,CO,DO的中点所以EG,FH为四边形的对角线EO=FO=GO=HOE
(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∵AE=AF,∴Rt△ABE≌Rt△ADF,∴BE=DF(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA=∠DCA=4
(1)不正确.若在正方形GAEF绕点A顺时针旋转45°,这时点F落在线段AB或AB的延长线上.(或将正方形GAEF绕点A顺时针旋转,使得点F落在线段AB或AB的延长线上).如图:设AD=a,AG=b,
只要是正方形都是相似的,所以只要证EFGH是正方形首先E、F都是中点,可得∠BAE=∠FEO,∠ABF=∠EFO同理,可得图中类似角都相等由等式性质可得∠HEF=∠DAB同理四个角都是直角下面要证四条
连接AH、BH、BE、CE因为AH=BH=AB=a,BE=CE=BC=a所以∠ABH=∠EBC=60度又因为角ABC=90度所以角EBH=30度所以弧EH=1\3弧AEC同理得弧EF=1\3弧EFD,
连结AC,∵EF是AB、CD的中垂线∴AD=AC∵ABCD为正方形∴AD=CD∴△ACD为等边三角形∴∠ADC=60°,∠ADA=30∵DG平分∠ADA∴∠ADG=15°
答:四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以
证明:∵CE⊥BF,垂足为M,∴∠MBC+∠MCB=∠BEC+∠MCB,∴∠MBC=∠BEC又∵AD∥BC,∴∠MBC=∠AFB∴∠AFB=∠BEC,又∵∠BAF=∠EBC,AB=BC,∴Rt△BAF
矩形相似可以得到AB/EC=BC/CDAB=CD=a,BC=b得EC=a^2/b对从图中可知道:EC=BC-BE=b-aa^2/b=b-a等式两边同除以b(a/b)^2=1-a/b解这个方程求出的那个
按题意,可知OM应为CE的一半.如果假设M无限接近于B点,则E也将无限接近于B点,此时OM趋于CE/√2,③并不成立所以你确定题目或答案都没弄错?要是你确定题目没错,那么要敢于质疑参考答案的正确性.因
∵四边形ABCD是正方形,∴∠C=∠A=90°,AD=BC=CD=AB,∵E、F分别为AB、CD的中点,∴EF∥BC,∴四边形ADFE是矩形,∴∠EFD=90°,FD=1/2CD=1/2AD,根据折叠
(1)∵ABCD是正方形∴∠B=∠D=90°AB=AD又∵AF=AE∴△ABE全等于△ADF∴BE=DF(2)∵AC是ABCD的对角线∴∠DCA=∠BCA∵BE=DF∴FC=EC又∵DC=DC∴△DC
过H做GG'垂直AD于G',过E做EE'垂直CD于E'四边形ADOE中,∵HOE=HAE=90°,∴∠AHO+∠AEO=180°又∵∠AHO+∠GHG'=180°∴∠GHG'=∠AEO∵AB//CD∴