如图,点A是BC上一点,三角形ABD三角形ACE都是等边三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:38:20
1、显然没有!可以证明的;图中所有可能的三角形,都没有可以固定的的60度角;因为D点和E点是可以随便改变的,而且主三角形ABC也是可以变化的,所以在这种条件下不可能可能得到一个全等三角形;而只能有相似
1.在三角形AEF和三角形DEC中∵E为AD的中点∴AE=ED∵AF‖BC∴∠EFA=∠ECD∴∠EAF=∠EDC∴三角形AEF≌DEC∴AF=CD∵AF=BD∴BD=CD2.连接FD∵AF‖=BD∴
(1)AF平行BC,AE:DE=AF:DCE是AD中点,AE=DE,则AF=DC又AF=BD,所以DC=BD,即D是BC中点(2)AB=AC,BD=DC,AD同是三角形ABD和ACD的边三边相等,则三
证明:作BF⊥CE于F点,CM⊥BD于M点则∠PFB=∠PMC=90°.∵PG是BC的垂直平分线,∴PB=PC.在△PBF和△PCM中,∠PFB=∠PMC∠BPF=∠CPMPB=PC,∴△PBF≌△P
证明:(1)∵△ABD、△ACE都是等边三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=60°,∴180°-∠CAE=180°-∠BAD,即∠BAE=∠DAC,在△ABE和△ADC中,∵AB=A
(1)如图所示;(2)∵AB∥EN,∴∠A+∠ANE=180°,∠B=∠NEC,∵∠ANE是△ECN的外角,∴∠ANE=∠NEC+∠C,∴∠A+∠B+∠C=180°.
∵8²+15²=64+225=289=17²即CD²+BD²=BC²即∠BDC=90°过点A做BC的垂线,交BC于点E∵AB=AC∴EC=A
⑴在等腰直角三角形ABC和等腰直角三角形EAD中∵∠ACD=∠AED=45°∴A、D、C、E四点共圆(一条线段两端点在同侧张等角,则四点共圆)∴∠ACE=∠ADE(在同圆中,同弦对的圆周角相等)而∠B
连接DB∵DB=DBBM=BNDM=DN∴△BDM≌△BDN(SSS)∴∠MBD=∠NBD即∠ABD=∠CBD∵∠A=90°即DA⊥ABDE⊥BC∴DA=DE
1)△ABC和△FDC相似三角形,DE∥AC,∠EDF=∠DFC=∠A=60°2)△ABC和△FDC相似三角形,DE∥AC,∠CDF=∠A=60°,∠EDF=180°-60°=120°
从Q作AC的平行线,分别交DF、BA于M、N又∵DE∥AC∵DE∥MN∥AC∴SQ:QP=SM:MD①,AN:NB=CQ:QB②∵DF∥AB∴SM:AN=QM:QN=MD:NB就有SM:MD=AN:N
将△ABP绕点A逆时针旋转后,与△ACP'重合后,AB与AC重合.此时,AP’=AP=5.∵∠PAB=∠P'AC,∴∠P'AP为直角.∴△P'AP为直角等腰三角形,∴PP’=5√2.
(1)∠BQM=60度.证明:BM=CN;BA=CB;∠ABM=∠BCN=60度.则⊿ABM≌ΔBCN(SAS),∠BAM=∠CBN;所以,∠BQM=∠ABQ+∠BAM=∠ABQ+∠CBN=60度.(
证明:连接BD∵BM=BN,DM=DN,BD=BD∴△BDM≌△BDN(SSS)∴∠ABD=∠CBD∵DE⊥BC,∠A=90∴∠A=∠BED=90∵BD=BD∴△ABD≌△EBD(AAS)∴DA=DE
作F关于BC的对称点M连EM交BC于P,即为所求作
过D作DG∥BE交AC于G,∵D为BC中点,∴G为CE中点,即EG=1/2CE,∵AE:CE=1:2,∴AE=EG,又EF∥DG,∴F为AD中点,即AF:DF=1.
BD∥MF,证明:设∠ABC=2α,则:BD为角平分线,——》∠ABD=α,∠A=90°,——》∠C=90°-2α,ME⊥BC,——》∠MEC=90°,——》∠AME=∠MEC+∠C=180°-2α,
联结ABBC是半圆O的直径,点G是半圆上任意一点,点A为弧BC中点,AD垂直BC于点D交BG于点E,AC与BG交于点F∴∠DAC=RT∠-∠ACB∠AFB=RT∠-∠ABC=RT∠-∠ACB∴∠DAC
三角形CMN是等边三角形证明:因为三角形ABC是等边三角形所以AC=BC角ACB=60度因为三角形CDE是等边三角形所以CD=CE角DCE=80度因为角ACD=角ACB+角BCD=60+角BCD角BC