如图,点abcd为圆o上的四个点,ac平分∠bad
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:39:36
∵ABCD是矩形,∴AD=BC=2,∴AE=AD-DE=1,AC=√(AB^2+BC^2)=√6,∴CE=√(CD^2+DE^2)=√3,连接OE,∵CE是切线,∴OE⊥CE,在RTΔOCE中,设OE
设X,Y分别为矩形两边长,则x2+y2=64,设矩形面积z=xy,则下面图片,x2为x的平方,其他后面的2都是平方,丫丫的.公式太恶心人了,答案是32,你自己做吧..这点应该会吧..
连结OD因为∠AED=45°所以∠DOA=90°又因为ABCD为平行四边形所以∠CDO=90°即CD是圆O的切线
(1)证明:由平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,得CB⊥平面ABEF,而AF⊂平面ABEF,所以AF⊥CB(2分)又因为AB为圆O的直径,所以AF⊥BF,(3分
答案给的方法没有缺陷答案应该是设Q为CC1中点然后,证明平面D1BQ∥平面PAO你担心的是CC1上还有别的点Q'使得平面D1BQ'∥平面PAO,如果存在的话,平面D1BQ‘∥平面PAO,D1BQ∥平面
因为A,B,C,D四点共圆且矩形的对角线相等并且互相平分,即OA=OB=OC=OD,无论怎么绕着O点旋转,结果仍然四点在圆上且为矩形,形状大小都不变.因为0A=0B=AB=4,由勾股定理求出AD=BC
题目没错角AEC=90+角DCE=90+角ACB然后要证明CE与⊙O的位置关系(明显是相切)只需证明CE与EO相垂直即角CEO为90°即角EOC+角ECO为90°即角EOC=角DCE+角ACB即角EO
证明:连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC,又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴CD与⊙O相切.
连接PD①∵AB=ADAP=AP∠BAP=∠DAP=45°∴△APB≌△APD∴∠ABP=∠ADP∠PBC=∠PDF∵PE⊥PB∴在四边形BCEP中∠PBC+∠PEC=180°∵∠PEF+∠PEC=1
过点O作OF⊥CD于点F,反向延长OF交AB于点E,连接OC,OB,∵AB∥CD,∴OE⊥AB,OF⊥CD,∴BE=12AB=12×6=3,CF=12CD=12×8=4,∵⊙O的半径为5,∴OE=OB
证明:因为矩形ABCD中,OA=OB=OC=OD所以点A、B、C、D在以O为圆心的圆上再问:请问我还可以问你别的题吗?好的话都选你再答:当然可以再问:已知在○O中,A,B是线段CD与圆的两个交点,且A
自己画图,延长NE至G,使得MG=ME有直角三角形AEB,AM=BM,所以AM=mE=MG所以三角形AGE为直角三角形又因角AEG=CEN,同一个弦AD对应的角相等ACN=ABD又ABD+BAE=90
(1)相切.连结OE.因为∠EOC=2∠DAO=2∠ACB=∠ACB+∠DCE所以∠EOC+∠ECO=90°所以∠OEC=90°故CE为切线.(2)半径为四分之根号六.简答:AB=/2,DE=1,AE
3对∵BC∥AD∴弧AB=弧CD则AB=CD,∠BAC=∠CDB,∠ABD=∠DCA梯形ABCD是等腰梯形∠BAD=∠CDA,∠ABC=∠DCB,AC=BD用全等三角形的条件,可以判断△ABD≌△DC
因为正四棱锥的底面是正方形,且四个顶点都在圆周上.任何一个四个定点在圆周上的矩形若为正方形,那么这个正方形的顶点一定在大圆上,也就是说正方形的对角线即为直径.再问:还是不明白,球的任何一个切面上都可以
(1)相切.连结OE.因为∠EOC=2∠DAO=2∠ACB=∠ACB+∠DCE所以∠EOC+∠ECO=90°所以∠OEC=90°故CE为切线.(2)半径为四分之根号六.简答:AB=/2,DE=1,AE
OA=OC∠OAC=∠OCAOC平行AB∠AOC+∠DAB=180°∠AOC+∠OAC+∠OCA=180°∠OCA=∠CAB∴AC平分∠DAB第二问还没出来-=容易求得AC平分∠DAB所以弧BC=弧C
从点O引垂线至CD,垂足为点N,即交于CD上点N;在三角形OCM和三角形OCN中,因为角COM=角CON=90度,角ACB=角ACD,OC=OC,所以三角形OCM和三角形OCN全等;所以ON=OM=圆
存在即是以O为圆心1/2对角线为半径(即OA)的圆