如图,正方形ABCD中.e为bc上的一点,ae平分∠dae

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:26:01
如图,正方形ABCD中.e为bc上的一点,ae平分∠dae
如图,正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF.

(1)证明:∵ABCD是正方形,∴DC=BC,∠DCB=∠FCE,∵CE=CF,∴△DCF≌△BCE;(2)∵△BCE≌△DCF,∴∠DFC=∠BEC=60°,∵CE=CF,∴∠CFE=45°,∴∠E

(平面与平面性质)如图,四棱柱ABCD-A1B1C1D1中底面ABCD为正方形侧棱AA1⊥底面ABCD,E是棱BC的中点

连接CD1交C1D于M,连接EM由于E是BC的中点,M是CD1的中点故EM是三角形CBD1的中位线,故有EM∥BD1因为EM在平面C1DE内,BD1在平面C1DE外故有BD1∥平面C1DE

如图4 在正方形ABCD中 AC为对角线 E为AC上一点连接EB ED

证明:∵四边形ABCD是正方形,∴BC=CD,∠ECB=∠ECD=45°.又EC=EC,∴△BEC≌△DEC.(2)由(1)可知:△BEC≌△DEC∴∠BEC=∠DEC=1/2∠BED=70°∴∠AE

如图,四棱柱ABCD-A1B1C1D1中,底面ABCD是正方形,侧棱A1A⊥底面ABCD,E为A1A的中点.

证明:连接AC,设AC∩BD=F,连接EF,因为底面ABCD是正方形,所以F为AC的中点.又E为A1A的中点,所以EF是△A1AC的中位线,所以EF∥A1C.因为EF⊂平面EBD,A1C⊄平面EBD,

如图,ABCD、CEFG是正方形,B、C、E在同一直线上,正方形ABCD的面积为5,正方形CEFG的面积是2

∵正方形ABCD的面积为5∴BC=根号5正方形CEFG的面积是2∴CE=根号2△BDG的面积=(根号5-根号2)×根号5=5-根号10=5-3.162=1.838

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别为AB,PB的中点

(1)CD⊥ADP∴CD⊥APEF∥=AP/2﹙中位线﹚∴EF⊥CD⑵设PD=1取坐标系D﹙000﹚A﹙100﹚C﹙010﹚P﹙001﹚设G﹙a,0,b﹚∈PAD则F﹙1/2,1/2,1/2﹚GF=﹛

已知,如图,正方形abcd中,E为BC上一点,AF平分

是AE=BE+DF吧!再问:是,我打错了。求解!再答: 延长EB至G点,使BG=DF,链接AG已知,∠DAF=∠FAE,边AD=AB∴ΔADF≌ΔABG(SAS)∴∠BAG=∠DAF∵∠DA

如图,正方形ABCD中,E为BC上一点,AF平分∠DAE,求证:BE+DF=AE

在CB延长线上截取BG=DF,连接AGBG=DF,再问:

如图,正方形ABCD的边长为4,△ABE是等边三角形,点E在正方形ABCD中,在对角线AC上存有一点P

不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+

如图,在四棱锥P‐ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,E为PD的中点.求证:

(1)连结BD,AC交于O.∵ABCD是正方形,∴AO=OC,OC=12AC连结EO,则EO是△PBD的中位线,可得EO∥PB∵EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC(2)∵PA⊥平面

如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm

(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C

已知:如图,在正方形ABCD中,E.F分别为BC,CD的中点.求证:AE=AF

∵ABCD是正方形∴AD=AB=CD=BC∠D=∠B=90°∵E.F分别为BC,CD的中点.∴BE=1/2BC=1/2ABDF=1/2CD=1/2AB∴BE=DF在Rt△ABE和Rt△ADF中AB=A

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.

十几年了,最近突然开始回顾学生时代,只有这立体几何还记得,(1)求证:EF⊥CD;∵ABCD为矩形∴CD⊥AD又∵PD⊥平面ABCD∴PD⊥CD∴CD⊥平面PAD,CD⊥PA∵E、F均为中点∴EF∥P

如图正方形ABCD中,AB=根号2,点F为正方形ABCD外一点,点E在BF上,且四边形AEFC为菱形

延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B

如图,在正方形ABCD-A1B1C1D1中,E,F分别为棱D1D和B1C1的中点,求证

1连接BD交AC于点O,则可知,O是BD的中点.所以EO是三角形BDD1的一条中位线.所以有,EO//BD1因为EO∈平面EAC,DB在平面EAC外,所以,BD1//面EAC2连接B1O,由于B1C=

如图,正方形ABCD中,E为AD中点,BD与CE交于点F,求证AF垂直BE

设BE、AF交于O在△AFD和△BFD中,DF=DF,AD=CD(正方形),∠ADF=∠CDF(正方形对角线平分角),∴△AFD和△BFD全等,则∠DAF=∠DCF在△AEB和△DEC中,AE=DE(

已知:如图,正方形ABCD中,E为BC上一点,AF平分

(没时间画图,请谅解.)延长CD在CD延长线上截取DG=BE在△ABE与△ADG中AB=AD∠B=∠ADB=90°BE=DG∴△ABE≌△ADG(SAS)∴AE=AD,∠BAE=∠DAG∴∠EAG=9

如图1所示,在正方形ABCD中,AB=1,AC是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与

(1)证明:∵∠DEF=45°,∴∠DFE=90°-∠DEF=45°.∴∠DFE=∠DEF.∴DE=DF.又∵AD=DC,∴AE=FC.∵AB是圆B的半径,AD⊥AB,∴AD切圆B于点A.同理:CD切

如图,正方形ABCD中,以B为圆心,BA长为半径作弧AC,圆o与弧AC外切于点P,与AD,CD相切于点E,F,正方形

设圆o的半径是R.    ∵圆o与弧AC外切于点P,与AD,CD相切于点E,F    ∴OP=OE=OF,OE⊥AD,O