如图,正方形ABCD中,M是AB边中点,DM垂直MN,BN平分角CBG
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:41:11
1、底面ABCD是正方形,AB=BC=CD=AD=a,PD=a,AD^2+PD^2=2a^2,AP^2=2a^2,根据勾股逆定理,△APD是RT△,同理△PCD是RT△,AD∩CD=D,∴PD⊥平面A
证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE
解析:∵在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD过P作PG⊥AD∴PG⊥底面ABCD∵PA=PD=(根号2/2)AD,E,F分别为PC,BD的中点∴PA=PD=
CE=CC`=AA`=6,BC=AB=3√2,所以BE=3√2(直角三角形),所以∠BCE=45°,所以∠ECC`=45°,45°/360°=1/8(以点C为圆心,CC`为半径的圆中),所以曲面面积占
(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E
第三个问题:利用赋值法,令SA=AB=AD=DC=1,则容易求出:SD=AC=√2、SC=√3.∵AN⊥SC,∴由射影定理,有:AC^2=CN×SC,∴CN=AC^2/SC=2/√3=(2/3)√3,
第一问由全等易得ME=MF第二问由M点作MG丄AD,MH丄AB角GMH=360-90-90-角BAD=180-角BAD=角EMF角HMF+角EMH=角EMF=角GMH所以角HMF=角GMH-角EMH=
设EF与AM的交点为O则EF垂直平分AM∵AB=2,BM=1∴AM=根号5∴AO=(根号5)/2易证△AOE∽△ABM∴AO/AB=AE/AM∴AE=5/4
(Ⅰ)证明:取BE1=CE,连接EE1和AE1∴EE1=BC,EE1∥BC,BC=AD,BC∥AD,∴EE1=AD,EE1∥AD.∴四边形AE1ED为平行四边形,∴AE1∥DE,在矩形A1ABB1中,
证明(1)连接A1C1∵M是A1B中点,N是BC1中点∴MN//A1C1∵A1C1在面A1B1C1D1内∴MN//平面A1B1C1D1∵正方体∴面A1B1C1D1//面ABCDMN不在面ABCD内∴M
图在哪证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB
证明:(Ⅰ)连接OE.∵O是AC的中点,E是PC的中点,∴OE∥AP,又∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.  
证明:(1)如图,连接DN,∵四边形ABCD是正方形,∴DN⊥AC∵DF⊥平面ABCD,AC⊂平面ABCD,∴DF⊥AC又DN∩DF=D,∴AC⊥平面DNF∵GN⊂平面DNF,∴GN⊥AC(2)取DC
如图,⑴ E.F是CD,DA的中点,A1D⊥D1D FD⊥D1D A1D,FD共面,∴A1D∥=FDA1D1DF是矩形,A1F∥=D1
证明:连接AC,交BD于O,连接MO∵四边形ABCD是正方形∴AO=CO∵M是VC的中点∴MO是△VAC的中位线∴MO//VA∵MO在面BDM内∴VA//平面BDM
(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG
答:过点F作FG⊥AB交AB于点G所以:GF//AD,GF==AD1)因为:∠FGE=∠ABM=90°因为:EF是AM的垂直平分线所以:∠GEF=90°-∠BAM因为:∠BMA=90°-∠BAM所以: