如图,正三角形内一点 到三个顶点的距离分别为3,4,5 求两个小三角形面积和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:10:19
边的垂直平分线的交点,外心
以BC为x轴,BC中点为原心,BC的垂直平分线为y轴建立平面直角坐标系设点P(x,y),B(-a,0),C(a,0),A(0,√3a)用坐标表示PA²=PB²+PC²得x
可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来
设三角形为ABC,点为P,PA=PB=PCPA=PB,所以P在AB中垂线上(中垂线定理逆定理)同理,P在BC、AC中垂线上所以P是三条中垂线交点
满足条件的正三角形ABC如下图所示:其中正三角形ABC的面积S三角形=34×4=3满足到正三角形ABC的顶点A、B、C的距离至少有一个小于1的平面区域如图中阴影部分所示则S阴影=12π则使点P到三个顶
如图正三角形ABC边长为2若点P 位于红色部分,则P到三个顶点的距离均大于1若点P 位于绿色部分,则P到三个顶点的距离至少有一个小于1所以,在边长为2的正三
AP=AP'=PP'=2P'C=PB=4PC=2√3∴∠P'PC=90°∠PCP'=30°由勾股定理得到AP^2+PC^2=P'C^2∠P'PC=90°AP=1/2PB所以AP对的角PCP'就是30°
①把三角形内的一点和三个角连接②反向延长三条连线③每条连线取在连线外的另外两个顶点中任意一个顶点作高,每个顶点只作一条高(这步有点难理解,不过画图出来即可)④由勾股定理可知直角三角形斜边大于直角边,三
用解析法做,先建立一个坐标系,在原点处画正三角形,原点为三角形中心.再画出外接圆,外接圆方程就知道了,三角形的三个顶点坐标也可以知道,设圆上任意一点坐标为(x,y)在表示出这点到三个顶点的距离的平方和
直角三角形中费马点在斜边中线上因为是直角三角形,中线等于斜边的一半所以P到三个顶点的距离之和就是2*根号7/3
三角形内一点到三个顶点的距离相等,那么它是三角形的三边垂直平分线的交点,是三角形的外心.
连接AB,AC,BC.分别作AB,AC,BC的垂直平分线,三条垂直平分线交于一点,这个点就是P
以上两位不正确,正方形的顶点到3个顶点的距离和最小,如果是正方形内的话,可能求不到极值.如果变长是1话,改点到自己的距离是0,0+1+1=2对角线焦点是1.414*3/2=2.121不过编程计算可以得
如果是钝角三角形,只有在a边上截取线段才能做出符合条件的正方形.唯一所以最大.如果是锐角或者直角三角形,可以这样考虑.由于给定了一个三角形,我们设面积为S是个定值.可知S=1/2*abSinC(acS
分别以两直角边ABAC为边向外侧作正三角形ABDACE连结CDBE交于一点,则该点即为所求P点.你可以把直角顶点放在直角坐标系原点上,两条边与坐标轴重合.然后取出两条直线的方程.然后求交点.结果蛮复杂
对于任意三角形△ABC,若三角形内某一点P令PA+PB+PC三线段有最小值的一点,P为费马点.*当三角形的内角都小于120度时o向外做三个正三角形△ABC',△BCA',△CAB'o连接CC'、BB'
假设三角形ABC,内一点P,PA=3,PB=4,PC=5以B为原点逆时针三角形BCP旋转60度,P新位置Q三角形AQC为直角三角形∠APB=150度AB^2=3^2+4^3-2*3*4*cos∠APB
∵△P‘AC是△PAC绕点A旋转得到的∴△PAB≌△P’AC∴∠P‘AC=∠PAC∵△ABC是等边三角形∴∠BAC=60°∴∠PAP’=∠P‘AC+∠PAC=∠PAC+∠PAB=∠BAC=60°记得及
假设正方形的边长是a,并且将其置于平面直角坐标系的第一象限,(直觉是对角线的交点)则距离=Sqrt[x^2y^2]Sqrt[(x-a)^2y^2]Sqrt[x^2(y-a)^2],假设正方形的四个顶点