1 ((2x² 1)√(x² 1))的不定积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:19:10
1 ((2x² 1)√(x² 1))的不定积分
求下列函数的值域: (1)y=1-x²/1+x² (2)y=-x²-2x+3 (3)y=x+1/x (4)y=x+√1-

解题思路:用x2的取值范围、二次函数的的性质、均值不等式,换元法求函数的值域解题过程:

已知f(x)=x²+x+1

解题思路:考察函数的概念及性质解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/re

x^5+x^4 = (x^3-x)(x^2+x+1)+x^2+x

是这样的:x^5+x^4=x^3(x^2+x)=(x^2+x)[(x^3-1)+1]=(x^2+x)(x^3-1)+x^2+x=[x(x+1)(x-1)](x^2+x+1)+x^2+x=(x^3-x)

|X-1|+|X-2|+|X-3|+|X-4|+|X-5|+|X-6|+|X-7|+|X-8|+|X-9|+|X-10|

|x-1|+|x-10|表示数轴上x到1的距离+x到10的距离.显然最小值是9,此时x只要在1到10之间就好.类似的,|x-2|+|x-9|的最小值是7,此时x在2到9之间就好.|x-3|+|x-8|

线性代数求行列式 |1 2 x 1| |x 1 x x| |x x 1 x| |x x x 1|

再答:再问:为什么最外一圈可以去掉?再答:行列式展开啊再答:只有一个1,其他全是0

x(x+1)^3+x(x+1)^2+x(x+1)+x+1因式分解

解x(x+1)³+x(x+1)²+x(x+1)+x+1=(x+1)[x(x+1)²+x(x+1)+x+1]=(x+1)(x+1)[x(x+1)+x+1]=(x+1)

{2X+1}+{X}

这种题得分情况讨论①当x

1、x(x-y)(x+y)-x(x+y)^2

1)x(x-y)(x+y)-x(x+y)^2=x((x-y)(x+y)-(x+y)^2)=x(x^2-y^2-x^2-2xy-y^2)=x(-2xy-2y^2)=-2xy(x+y)2)(2a+b)(2

已知x²-5x=14,求(x-1)(2x-1)-(x+1..

解题思路:先化简代数式,再把x²-5x=14代入进行计算解题过程:0最终答案:略

先化简在求值(x-1/3x-x+1/x)*x/x²-1,其中x=√2-3

你那个公示表达我看不大懂,如果式子跟我写的一样,那就是这样啦,传个照片好麻烦.希望能帮到你

x/x平方-x+2=2x/x+1

x/x(x-1)+2=2x/(x+1)1/(x-1)+2=2x/(x+1)x+1+2(x-1)(x+1)=2x(x-1)x+1+2x²-2-2x²-2x=0-x-1=0-x=1x=

x^2-|x|+1

[0.75,+∞)图像法

化简多项式:1+x+x(1+x)+x(1+x)^2+.+x(1+x)^2010

(1+X)^2011因为前两项化简的时候是:(1+X)*(1+X)=(1+X)^2前三项化简的结果是:(1+X)*(1+X)^2=(1+X)^3...一次类推最后的化简结果是:(1+X)^2011

已知x*x-3x+1=0求√(x*x+1/x-2)=?

x*x-3x+1=0x*x+1=3x√(x*x+1/x-2)=√(3x/x-2)=√(3-2)=1再问:/是除号再答:是的啊再问:应是x*x+1除以x-2再答:如果是这样的话,你把x=(3+根号5)/

化简:[√(x^2-6x+9)/x^2-x-12]*(x^3-16x)/(x^2-3x)-1/(x+3) {x>3}

分步写,好让看的清楚符号[√(x^2-6x+9)/x^2-x-12]=√(x-3)^2/(x-4)(x+3)=(x-3)/(x-4)(x+3);(x^3-16x)/(x^2-3x)=x(x^2-16)

1+x+x^2+x^3+.+x^99+x^100

这个就是等比数列的求和,将每一项可看做一部分,如a1=1,a2=x……a101=x^100根据等比数列的求和公式,a1(首项)=1,末项a101=x^100,公比q=x,n=101则Sn=1+x+x^

|x-1|+|x-2|

|x-1|就是x轴上离点1的距离|x-2|就是x轴上离点2的距离求此点到1,2的距离之和小于3画图即得x的范围是-1到3开区间

x-1)(X-2)(x-3)...(x-50)+x(x-2)(X-3)...(X-50)+...+x(x-1)(x-2)

等于(x-1)(x-2)(x-3)(x-4)...(x-50)的导数

x+2/x+1-x+3/x+2-x+4/x+3+x+5/x+4

/>(x+2)/(x+1)-(x+3)/(x+2)-(x+4)/(x+3)+(x+5)/(x+4)=1+1/(x+1)-1-1/(x+2)-1-1/(x+3)+1+1/(x+4)=1/(x+1)-1/