如图,抛物线y=a(x-4)的平方 4与x轴交于ab

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:06:00
如图,抛物线y=a(x-4)的平方 4与x轴交于ab
如图,抛物线y=x平方-2x-3,抛物线与x轴交予A,B两点A在左

y=x^2-2x-3=(x+1)(x-3)=0所以,A点坐标(-1,0),B点坐标(3,0)C点坐标:x=0是的y值即,C点坐标(0,-3)假设:P(x1,y1),当顶点P或G恰好落在Y轴上时,即有P

如图,已知抛物线x2=4y,过抛物线上一点A(x1,y1)(不同于顶点)作抛物线的切线l,并交x轴于点C,在直线y=-1

(1)证明:∵y=x24,∴y′=x2,∴kl=y′|x=x1=x12,∴l:y=x12(x−x1)+x124=x12x−x124,∴C(x12,0),设H(a,-1),∴D(a,0),∴TH:y=-

如图,已知抛物线y=-1/2x2+x+4交x轴的正半轴于点A,交y轴于点B.

(1)令x=0,得y=4即点B的坐标为(0,4)令y=0,得(-1/2)x²+x+4=0则x²-2x-8=0∴x=-2或x=4∴点A的坐标为(4,0)直线AB的解析式为(y-0)/

如图,已知抛物线y=-1/2x平方+x+4交x轴的正半轴与点A,交y轴于点B

令y=0,的x=4或-2(舍去),故A(4,0)同理令x=0得y=4,故B(0,4).则直线ABx+y-4=0.(2)由题可得,要使直线AB与该正方形相加,只需直线AB与线段PQ有交点,(lz学过线性

如图,已知抛物线y=-1/2x平方+x+4交x轴的正半轴于点A,交y轴于点B

A(4,0)B(0,4)AB的解析式y=-x+4(2)2《=x《=4

如图,已知抛物线y=-1/2x²+x+4交x轴的正半轴于点A,交Y轴于点B

令y=0,得x=4,-2,点A在x正半轴,所以A(4,0)令x=0,得y=4,所以B(0,4)直线xy:y=-x+4点P(x,x),点Q(x/2,x/2)(1)考虑两种极端,点P恰好在直线AB上,和点

如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0)

(1)①对称轴x=-42=-2;②当y=0时,有x2+4x+3=0,解之,得x1=-1,x2=-3,∴点A的坐标为(-3,0).(2)满足条件的点P有3个,分别为(-2,3),(2,3),(-4,-3

如图①,抛物线y=ax2+bx的对称轴为直线x=-3/2,且抛物线经过点A(-4,2),AB平行于x轴,交抛物线于点B.

⑴由已知:-b/(2a)=-3/2,2=16a-4b,解得:a=1/2,b=3/2,∴二次函数解析式为:Y=1/2X^2+3/2X,令Y=2,X^2+3X-4=0,X=-4或1,∴B(1,2).⑵过B

如图抛物线y=a(x-1)2+4与x轴交于AB两点与y轴交于点CD是抛物线的顶点抛物线的对称轴与X轴交于eAB=DE解析

抛物线y=a(x-1)^2+4与x轴交于A(1-√(-4/a),0),B(1+√(-4/a),0),顶点D(1,4),对称轴与x轴交于E(1,0),由AB=DE得2√(-4/a)=4,∴-4/a=4,

(2009•河池)如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的

(1)①对称轴x=-42=-2;②当y=0时,有x2+4x+3=0,解之,得x1=-1,x2=-3,∴点A的坐标为(-3,0).(2)满足条件的点P有3个,分别为(-2,3),(2,3),(-4,-3

如图,已知抛物线y=-x2+4x+3与y轴交与点A,与x轴正半轴交与点D,顶点为点B,抛物线的对称轴交x轴于点c,M是

1)当K=2时,假设存在点M(a,2a),那么MN=MQ=|2-a|AO//MQ,因此四边形AOMQ是梯形,面积等于(MQ+AO)*M到y轴的距离/2=(3+|a|)*|a|/2正方形MNPQ的面积=

))如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,

1对称轴为x=-2x²+4x+3=0(x+3)(x+1)=0x=-1x=-3所以点A(-3,0)2点P(-2,3)或点P(2,3)3点D为(-2,1)CM:(y-3)/x=y/(x+2)2y

如图,点A在抛物线y=1/4x²上,过点A作与x平行的直线交抛物线于点B,延长AO、BO分别与抛物线y=-1/

分析:(1)根据题意得点A的坐标是将x=1代入即可,根据对称性可得点B的坐标,即可得OB的解析式,与二次函数的解析式组成方程组即可求得点D的坐标;(2)当四边形ABCD的两对角线互相垂直时,由对称性得

如图,抛物线y=x^2-2mx+(m+1)^2(m>0)的顶点为A,另一条抛物线y=ax^2+n(a

设,A(x1,y1)p是A,B中点,B(0,1)x1+xB=2xp.y1+yB=2yp.得x1=2,y1=5,由B点坐标代入y=ax^2+n(a

如图:抛物线 y=x2+4x+k与轴交于A、B两点,设此抛物线的顶点为C

(1)y=x2+4x+k=(x+2)2+k-4∴抛物线的顶点C的坐标为(-2,k-4)(4分).(2)过点C作CD⊥x轴于点D,由抛物线的对称性可得CA=CB∵△ABC是直角三角形∴BD=CD=4-k

如图,过抛物线y^2=4x的焦点作两条互相垂直的直线分别交抛物线于点A,B,求|AB|+|CD|的最小值

分析:考虑到过抛物线y²=4x的焦点F引两条互相垂直的直线AB、CD,利用抛物线的极坐标方程解决.先以F为极点,FX为极轴,建立极坐标系,写出抛物线的极坐标方程,利用极径表示出|AB|+|C

如图,已知抛物线y=- 1 2 x2+x+4交x轴的正半轴于点A,交y轴于点B.

(1)令x=0,得y=4即点B的坐标为(0,4)令y=0,得(-1/2)x²+x+4=0则x²-2x-8=0∴x=-2或x=4∴点A的坐标为(4,0)直线AB的解析式为(y-0)/

如图,已知抛物线y=1/2x^2-x 4交x轴于A,C两点,交y轴于点B.求点A,C的坐标 设点D为抛物线的对称轴

亲,不知道是不是我的电脑有问题,我看不见图.而且没有看懂你的函数.如果是y=1/2x^2-x-4      A(4,0) &nbs

如图,抛物线的顶点M在x轴上,抛物线与y轴交于点N,且OM=ON=4,矩形ABCD的顶点A、B在抛物线上,C、D在x轴上

(1)∵OM=ON=4,∴M点坐标为(4,0),N点坐标为(0,4),设抛物线解析式为y=a(x-4)2,把N(0,4)代入得16a=4,解得a=14,所以抛物线的解析式为y=14(x-4)2=14x

如图,设抛物线C1:y=a(x+1)^2-5,C2:y=-a

解题思路:利用二次函数的性质求解。解题过程:过程请见附件。最终答案:略