如图,抛物线y=-0.5x的平方 mx n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:32:28
y=x^2-2x-3=(x+1)(x-3)=0所以,A点坐标(-1,0),B点坐标(3,0)C点坐标:x=0是的y值即,C点坐标(0,-3)假设:P(x1,y1),当顶点P或G恰好落在Y轴上时,即有P
由y=-x²-2x+2,令x=0,得y=2,所以C点坐标为(0,2)又y=-x²-2x+2-(x²+2x-2)=-(x+1)²+3得抛物线的顶点坐标为(-1,3
连接AB、A'B',将A'B'右侧阴影部分割补到AB右侧空白部分,阴影成了一个平行四边形,平行四边形宽2,高是抛物线的最大值:y=-X^2+2x+2=-(x-1)^2+3当x=1时,y有最大值=3阴影
解题思路:本题的关键是证明△AEF∽△DEG,设E(1,a),由相似比得关于a的方程,可得E的坐标,再求出AE的解析式,最后与抛物线的解析式联立方程组即可。解题过程:
(1)设L2的解析式为y=ax2+bx+c由题意,得c=2,-b/2a=1,a=-1所以b=2所以y=x2+x+2y=-x2+x+2=-(x-1/2)2+9/4所以抛物线的对称轴为x=1/2设L3的顶
关于y轴对称时偶函数∴令y=y,x=-x∴y=2/3x2-16/3x+8
根为3和-1再问:���再问:�ܽ����再答:再答:�в��У�����再问:���������再答:���������ʵ���再答:��ʽ�ֽⷨ��һԪ���η���再问:������再答:���
抛物线y=a(x-1)^2+4与x轴交于A(1-√(-4/a),0),B(1+√(-4/a),0),顶点D(1,4),对称轴与x轴交于E(1,0),由AB=DE得2√(-4/a)=4,∴-4/a=4,
分析:(1)根据题意得点A的坐标是将x=1代入即可,根据对称性可得点B的坐标,即可得OB的解析式,与二次函数的解析式组成方程组即可求得点D的坐标;(2)当四边形ABCD的两对角线互相垂直时,由对称性得
设,A(x1,y1)p是A,B中点,B(0,1)x1+xB=2xp.y1+yB=2yp.得x1=2,y1=5,由B点坐标代入y=ax^2+n(a
(1)A(3,0)B(0,-3)则c=3y=x2+bx-3当x=3,y=0时,b=-2y=x2-2x-3(2)的题目有问题吧!
分析:考虑到过抛物线y²=4x的焦点F引两条互相垂直的直线AB、CD,利用抛物线的极坐标方程解决.先以F为极点,FX为极轴,建立极坐标系,写出抛物线的极坐标方程,利用极径表示出|AB|+|C
4y=1/2x^2-2x与y=1/2x^2一减,得到|y|=|2x|,也就是说,在0≤x≤2的范围内,阴影部分与y轴平行的长度与该长度到y轴距离是正比关系,其实阴影部分的面积就是一个底为两函数在x=2
∵抛物线y=x2与直线y=x交于A点,∴x2=x,解得:x1=1,x2=0(舍去),∴A(1,1),∴抛物线解析式为:y=(x-1)2+1,故选:C.
∵点A的横坐标为-1,∴y=12×(-1)2=12,y=-14×(-1)2=-14,∴点A(-1,12),B(-1,-14),∴AB=12-(-14)=34,根据二次函数的对称性,BC=1×2=2,阴
y=-x²+x+2,那么半个周长=x+y=-x²+x+2+x=-x²+2x+2=-(x²-2x+1)+3=-(x-1)²+3,所以当x=1时周长最大,
解题思路:利用二次函数的性质求解。解题过程:过程请见附件。最终答案:略
假设B是函数平移后与X轴的右交点△ABD是等边三角形,则OD=√3OB设函数Y=-X²向上平移后解析式为:Y=-X²+C此时函数与X轴交点,代入Y=0X=±√C因为C大于O,因此O