如图,已知等边三角形ABC,点D是AC的中点,且CE等于CD,DF垂直BE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:48:46
∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF
解题思路:(1)根据等边三角形的性质证明△ABE≌△CAD就可以得出结论;(2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出结论.解题过程:如图,已知△ABC为等边三角形,点D
这个题条件不够是不是有D、f是BC、AB的中点或AF=BD
已知:△ABC为等边三角形,∴AB=BC=CA,∠A=∠B=∠C=60°.已知:AF=BD=CE,∴FB=DC=EA.在△AFE和△BDF和△CED中,FB=DC=EA,AF=BD=CE,∠A=∠B=
因为BD=CE,△ABC为正△所以AB=AC,∠A=60°所以AD=AE,∠A=60°所以△ADE正三角形
证明:∵△ABC等边∴AC=BC,∠BAC=∠B=∠ACB=60°∵△CDE等边∴CD=CE,∠DCE=60°∴∠ACB=∠DCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴∠CAD=∠B=6
∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF
证明因为三角形ABC是等边三角形所以角A=角B=角C=60度因为DE平行BC所以角ADE=角ABC=60度(两直线平行,同位角相等)角AED=角ACB=60度(两直线平行,同位角相等)得角A=角ADE
1.AD=BE,∠AEB=60°,证明如下:∵ΔABC,ΔCDE是正Δ∴CB=CA,CE=CD,∠BCA=∠ECD=60°∴∠BCE=∠BCA+∠ACE=∠ECD+∠ACE=∠ACD∴ΔBCE≌ΔAC
再答:只会第一题再问:谢啦
没有图,我只好按照自己画的位置来证明了证明:(1)∠ACE=∠DCE+∠ACD,∠BCD=∠BCA+∠ACD∵△ABC和△CDE都是等边三角形,∴∠BCA=∠DCE=60°∴∠ACE=∠BCD在△AC
证明:如图所示∵△ADE是等边三角形∴∠ADE=60°又∵△ABC是等边三角形∴∠BAC=60°又∵AD是△ABC的中线∴∠DAC=30°=∠DAF∴∠AFD=90°∴AC⊥DE∵△ADE是等边三角形
证明:因为三角形ABC和三角形ADE是等边三角形所以AB=AC角B=角BAC=角BAE+角CAE=60度AE=AD角DAE=角CAE+角DAC=60度所以角BAE=角CAD所以三角形BAE和三角形CA
BD=CE BF=CD 因为角2=角B=角C=角E=角F=60  
救命当然要快点了.慢了就没命了呀.楼主正被狗追咬,跑得四脚不着地?怎么得罪它了?还是因为长得太骨感的缘故?:)
猜想首先要从特殊点猜,我们不妨设点D为AB中点,E为AC中点;连接DE,DQ,PQ;由题意,容易得出四边形ADEQ为菱形,角ADQ=30度,角ADC=90度,所以角CDQ=60度,所以角QDP=120
解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S
1、证明:∵等边△ABC∴BC=AC,∠C=60∵等边△CDE∴CE=CD∴AD=AC-CD,BE=BC-CE∵P是AD的中点∴PD=(AC-CD)/2∴CP=CD+PD=(AC+CD)/2同理可得:
1、∵三角形ABC是等边三角形∴AB=BC,∠ABC=∠C=60°∵BD=CE∴△ABD≌△BCE∴∠ABD=∠CBE在三角形APE中,∠AEP=∠C+∠CBE=60°+∠CBE,∠PAE=∠BAC-