如图,已知点P为圆O外一点,PA,PB分别切圆O于A.B

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:51:07
如图,已知点P为圆O外一点,PA,PB分别切圆O于A.B
如图,p为圆O外一点,直线op交圆o与点b,c.过点p作圆o的切线

PA比PB=3比2设比值是x,有PA=3x,PB=2x在RT三角形OPA中,OA=r,AP=3x,OP=r+2x所以有r²+(3x)²=(r+2x)²r²+9x

如图,P为圆O外一点,直线OP交圆O于点B,C,过点P作圆O的切线PA,A为切点,已知PA/PB=3/2,求tan角PA

辅助线已作如图先证三角形ABP相似于三角形CAP:公共角P角ABP=角CAB+角ACB角CAP=角OAP+角CAO且三角形OAC等腰,从而角ACB=角CAO因为角CAB=角OAP=90°所以三角形AB

如图,点p为圆o外一点,自点p向圆o引切线pa,pb,切点为a,b,cd切圆o于点e,交pa,pb于点c,d,若pa等于

连接OA,OC,OE.∵A和E均为切点.∴∠OAC=∠OEC=90°;又OA=OE,OC=OC.∴Rt⊿OAC≌Rt⊿OEC(HL),AC=EC.同理可证:BD=ED,PA=PB.∴PC+CD+PD=

已知,如图,ab是○o的直径,点p为ab延长线上一点,pc为○o切线,c为切点,bd⊥pc,

(1)连接OC,因为角DB0=角COP,又因为角COP=2倍角CBO,所以角DBC=角CBO.可以证明三角形DBC与三角形CBA相似,可以得到DB:BC=CB:BA,=>BC^2=BD*BA(2)连接

如图,ab为园o的直径,c是圆o上一点,p是圆o外一点,op//bc,角p=角bac

(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△

如图,已知ab是圆o的直径,p为圆o外一点,P为圆O外一点,且OP平行BC,角P=角BAC

设OP和AC交D因为知道角P=角BAC且角POA=CBA所以角OAP=90所以可以算出AP的值而且AC垂直OP说以可以算出AD的值(面积法等)且OD是AC中垂线ADX2=AC

如图,圆O的半径为1,点P是圆O上一点,弦AB垂直平分线段OP

设ac切圆d于点g,bc切圆d于点f,连接df,fg,ad,bd,cd则有s=s△agd+s△aed+s△cdf+s△sgd+s□bedf因为s/de²=4根号3所以4根号3*de²

17(福建)南平已知:如图① , A是半径为2的⊙O上的一点,P是OA延长线上的一动点,过P作⊙O的切线,切点为B、设P

(1)解法一:连接OB.∵PB切⊙O于B,∴∠OBP=90°,∴PO^2=PB^2+OB^2,∵PO=2+m,PB=n,OB=2,∴(2+m)2=n2+2^2m^2+4m=n2;n=4时,解,得:m1

如图,圆O的半径为定长r,A是圆O外一定点,P是圆上任意一点.线段AP的垂直平分线l和直线OP相交于点Q,当点P在圆上运

∵A为⊙O外一定点,P为⊙O上一动点线段AP的垂直平分线交直线OP于点Q,则QA=QP,则QA-Q0=QP-QO=OP=R即动点Q到两定点O、A的距离差为定值,根据双曲线的定义,可知点Q的轨迹是:以O

如图,已知P为圆O外一点,PA.PB分别切圆O于A,B,OP与AB相交与点M,C为AB弧上一点,试说明角OPC=角OCM

解题要点:连接OA因为PA、PB是⊙O的切线所以OA⊥PA,AB⊥OP所以可证△OAM∽△OPA所以OA/OP=OM/OA由OA=OC得OC/OP=OM/OC而∠COP=∠MOC所以△POC∽△COM

如图,已知三角形ABC是等边三角形,圆O为它的内接圆,点P是弧BC上任一点,求证PB+PC=PA

你的辅助线说明你的思路是正确的,继续思考下去找到条件就行了,加油.我提示一下,把三角形ABC旋转到ADB,旋转后两蓝角相等,两黑角相等,PC=BD通过红角和蓝角互补,证P、B、D共线AB=AC&nbs

已知如图AB是圆O的直径,点P为BA延长线上的一点.

第一问:1)因为DC是圆O的切线,所以∠DCB=∠CAB2)因为AB是直径,所以∠BDC=∠BCA=90°3)由1)、2)可知△BCD相似于△BAC,于是BC/BA=BD/BC,即BC^2=BD*BA

如图,P是圆O外一点,求作:过点P作圆O的切线

连接圆心和P点,用尺规画出这一线段的中点,以这条线段的中点为圆心,这条线段的一半长为半径作圆,辅助圆与已知圆的交点就是切点,然后连接就可以了

如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两

过B作BE⊥X轴于E,过C作CF⊥X轴于F,过D作DQ⊥X轴于Q,∵OD=AD=3,∴OQ=1/2OA=2,DQ=√(OD^2-OQ^2)=√5,二次函数最大值之和就是BE+CF的值,设P(m,0),

如图,在圆o的直径上取一点p,以p为圆心,以ap为半径作圆p,过a点的两直线分别与圆o,圆p交于c

我正在解答您的问题,请稍候.再问:再答:如图,过点A作圆O的切线AM,则OA⊥AM,即PA⊥AM,∴AM是圆P的切线∴∠1=∠D(弦切角定理)同理∠1=∠EFA,∴∠D=∠EFA,∴EF∥CD&nbs

已知圆O外一点P,用尺规过点P作圆O的切线

1、连接圆O的圆心O和P两点2、分别已点O和P为圆心,已OP长为半径,做两个圆3、两个圆的两个交点为A,B两点,连接AB与OP交于C点4、已C点为圆心,已CP为半径做圆,交圆O于D,E两点5、连接PE

如图,点p是圆o外一点,过点p作圆o的切线,切点为4,连接po并延长,交圆o 于B,C两点.

证明:∵PA作⊙O的切线,切点为A,∴∠PAB=∠C,又∵∠P=∠P,∴△PBA∽△PAC请点击下面的【选为满意回答】按钮.

如图,已知点P是圆O外一点,PA是圆O的切线,切点为A连接PO并延长交圆O于点C,B

设半径为r,角P=45°,sqrt(n)指对n开根号,/指除号,乘号省略=>PA=OA=r,=>OP=sqrt(2)r,OB=OC=r,1)PBPB=OP-OB=[sqrt(2)-1]r,PA=[sq