如图,已知○O的内接四边形ABCD的边AB是直径,BD平分∠ABC,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:52:04
连接BD,∵AB为⊙O的直径,直线MN切⊙O于D,∠MDA=45°,∴∠ABD=45°,∠ADB=90°,∴∠DCB=∠ABD+∠ADB=45°+90°=135°.故答案为:135°.
∵四边形ABCD内接于圆O∴∠DCB+∠DAB=180°又∠PAD+∠DAB=180°∴∠PAD=∠DCB①∵DP//CA∴∠APD=∠BAC②又∠BAC=∠CDB③(等弧所对相等)由②③可得∠APD
证:∵AE:BE=DE:CE,∠AED即∠BEC(公共角)∴△AED∽△BEC∴BC‖AD∴∠DGE=∠CFE∵G、F、E三点共线∴∠GFE=180°∴∠DGE=∠CFE=90°∴∠CFG=∠DGF=
∵DP平分ADC∴∠ADP=∠CDP∵∠ADP,∠ABP是弧AP所对圆周角∴∠ADP=∠ABP(同弧所对的圆周角相等)∵ABCD内接与圆∴∠EBP=∠CDP(圆内接四边形对角等于邻补角)∴∠ABP=∠
百度不让发...说有不合适的词语..发你消息里了
二)6个一)△ABM∽△ADC∠BAM=∠CDMAB/DC=AM/DC又因为E、F分别为AB、CD的中点所以AE/DF=AM/DM所以△AEM∽△DFM∠AEM=∠DFM又因为E、F分别为AB、CD的
∵A、B、C、D共圆,∴∠BCE=∠BAD,又AB∥CD,∴AD=BC,∴∠ABD=∠BAC.∵BE切⊙O于B,∴∠CBE=∠BAC.由∠CBE=∠BAC、∠ABD=∠BAC,得:∠CBE=∠ABD,
证明:(1)∵AB∥CD且AE⊥CD,∴AB⊥AE,∴AE是⊙O的切线;(2)连接AC,根据切割线定理:AE2=ED•EC,设DE=x,则22=x(x+3),解得:x1=1,x2=-4(舍去),即:D
再答:请采纳哦~O(∩_∩)O再问:图不是很清楚再答:连接BO并延长交AD于H.∵△ABD是⊙O的内接三角形,∴OB平分∠ABD,∵AB=BD,O是圆心,∴BH⊥AD.又∵∠ADC=90°,∴BH∥C
连接AC,BD,AD是圆O的直径,所以∠ACD=∠ABD=90度,∠ACE=∠EBD=90度,C是弧BD的中点,圆周角∠CAD=∠CAB=∠CDB=∠CBD,∠ADC=∠ACD-∠CAD=90度-∠C
题目缺少条件,如图,圆O2可以在O1O2连线上任意移动,且因为半径的不同,均可以保证经过AB两点所以,两圆圆心O1O2之间的距离是不确定的!
,△ABD为等边三角形所以,∠BCA=∠BDA=60°在AC上截取一段CE=BC那么,△BCE也是等边三角形则,∠CBE=60°而,∠ABD=60°所以,∠CBE-∠DBE=∠ABD-∠DBE即,∠C
如AB平行CD,就是一矩形如AB不平行CD,就是一等腰梯形连接AC,因AD平行BC,则角DAC=角ACB则AB=CD(1)如AB不平行CD,则四边形ABCD为等腰梯形(2
∠CBD∠CDB∠CAB∠DCF∠CAF证明:EF是圆的切线所以∠BCE=∠CDB∠DCF=∠CAF=∠DBCBD‖EF所以∠ABD=∠E∠DBC=∠BCE所以∠DBC=∠BDC∠BCE=∠DCF所以
AE垂直CD,CD//AB=>AE垂直AB,又AB是圆O的直径且A点在圆上=>AE就圆O的切线
AC=3,PC=0.6,∴AP=2.4,设BP=x,PD=y,则AB=BP=x+y,由相交弦定理,xy=1.44,y=1.44/x,①由△PAB∽△PDC得AB/DC=PA/PD,∴DC=AB*PD/
(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE.∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC.∵AB是圆O的直径,∴BC⊥AC,且DC∩AC=C.∴BC⊥平面ADC.∵DE∥