如图,已知AP,AE分别是△ABC的高和中线,AB=6cm,AC=8cm
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:42:09
1.角ABC=90度-角CAB=角ACE三角形ACE和CBE相似AE:CE=CE:BECE²=AE×EB2.角P=90度-角PAE=角ABG,三角形AEP和DEB相似AE:EP=ED:EBA
1,全等,AB=AD,AE=AP,角EAB=DAP3,∵△APD≌△AEB,∴∠APD=∠AEB,又∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°,∴EB⊥
以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°∵∠APD=
连接AD,AC和CP∵C是弧AP的中点,弦CD垂直ABAD=AC=CP弧DC=弧APDC=AP∴△DAC≌△ACP∠ADC=∠CPA∠AED=∠CEPAD=CP∴△DAE≌△ECPAE=CE过A作AG
如图,作EH⊥BC.则⊿ABP≌⊿PHE(AAS),PH=ABEH=BP-BC=PH-PC=CH.∠ECH=45°, ∠ECF=45°
△PBQ是等边三角形.理由:∵△ABC和△BDE分别是等边三角形,∴AB=CB,BE=BD,∴∠ABC=∠DBE=60°,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△
由AB=a,设AP=x,PB=a-x,两个正方形面积和S=x²+(a-x)²=x²+a²-2ax+x²=2x²-2ax+a²=2(
由边角边定理易知△APD≌△AEB,故①正确;由△APD≌△AEB得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,所以∠BEP=90°,过B作BF⊥AE,交AE的延长线于F,则BF的
①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=PAD,又∵AE=AP,AB=AD,∴△APD≌△AEB;③∵△APD≌△AEB,∴∠APD=∠AEB,又∵∠AEB=∠AEP+
连接AD,AC和CP∵C是弧AP的中点,弦CD垂直ABAD=AC=CP弧DC=弧APDC=AP∴△DAC≌△ACP∠ADC=∠CPA∠AED=∠CEPAD=CP∴△DAE≌△ECPAE=CE过A作AG
因为ABCD为正方形,所以AB=AD,∠BAD=∠BAE+FAD=90度.因为DE⊥AP,垂足分别为E、F,所以∠AFD=AEB=90度,所以∠FDA+∠FAD=90度.所以∠ADF=∠BAE.因为∠
⑴△ABD周长=AB+BD+AD=AB+(1/2)BC+AD△ACD周长=AC+AD+DC=AC+AD+(1/2)BC两个相减,即AB-AC=2CM⑵△ABD面积=(1/2)BD*AE△ACD面积=(
我想说图太烂了!因为全等,B'C'=BC面积相等所以高相等因为B'C'=BC所以BD=DC因为全等AB=A'B'∠ABC=∠A'B'C'所以三角形ABD全等于三角形A'B'D'所以AD=A'D'再问:
证明:作PG⊥BC,交AC于点G∵四边形ABCD是正方形∴∠ACB=45°,PG=PC∴CG=√2PC在AB上截取AM=CP,连接PM∵∠APE=90°∴∠CPE+∠BOA=∠ABP+∠BPA=90°
过G点做AB的垂线,交AB于H,则点G到直线AB的距离为y的值不变则(x,y)永远与x轴平行(因为y不变了),也就是说,只要EF长度不变,y值恒定
高应该是AD吧S△ABE=1/2*BE*AD=1/2*3*6=9S△ACE=1/2*CE*AD=1/2*3*6=9
a的大小是不会随点P的移动而变化.如图,设点P为AB上任意一点.在△APD和△CPB中,AP=CP,∠APD=∠CPB=120°,PD=PB∴△APD≌△CPB(SAS)∴∠PAD=∠PCB,又∵∠A