如图,已知AB是半径为1的⊙o`的直径
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:05:24
连接AO,∵半径是5,CD=1,∴OD=5-1=4,根据勾股定理,AD=AO2−OD2=52−42=3,∴AB=3×2=6,因此弦AB的长是6.
连接MO交弦AB于点E,(1)∵OH⊥MN,O是圆心,∴MH=12MN,又∵MN=43cm,∴MH=23cm,在Rt△MOH中,OM=4cm,∴OH=OM2−MH2=42−(23)2=2(cm);(2
圆心为qad=4,db=1ad=3qa^2+qb^2=ab^2ad^2+qd^2=qa^2qd^2+db^2=qb^2
∵AC是⊙O的直径,∴∠ABC=90°,∠BAC=30°,CB=1,AB=3,∵AP为切线,∴∠CAP=90°,∠PAB=60°,又∵AP=BP,∴△PAB为正三角形,∴周长=33.
阴影部分的面积为=60π×1360=π6.
证明:∵C为AB的中点,OC为半径,∴PA=PB,AB⊥OC,∵AP=12AB=32AO,∴OP=AO2−AP2=AO2−34AO2=12OA=12OC,∴PC=12OC,即OP=PC,∴四边形OAC
(1)在△OPC中,由余弦定理得PC2=OP2+OC2-2OP•OC•cosθ =1+4-4cosθ=5-4cosθ.
证明:(1)连结OM、ON.则OM=ON有oe=of,得∠peo=∠pfo,又oa⊥MN,所以,三角形oep全等三角形ofp所以pe=pf又mp=np得me=nf(2)有(1)得me=nf又oe=of
设ac切圆d于点g,bc切圆d于点f,连接df,fg,ad,bd,cd则有s=s△agd+s△aed+s△cdf+s△sgd+s□bedf因为s/de²=4根号3所以4根号3*de²
作ON⊥AB,根据垂径定理,AN=12AB=12×6=3,根据勾股定理,ON=OA2−AN2=52−32=4,则ON≤OM≤OA,4≤OM≤5,只有C符合条件.故选C.
△与○的相切,共有4次:第一次,为○在右侧与AC相切;第二次为○在右侧与AB相切;第三次为○在左侧,与AC相切;第四次为○在左侧,与AB相切(排序依据后面的详细计算)当第一次相切时,如图1所示:OE⊥
勾股定理得,r^2=1/4r^2+(1/2ab)^2所以 (1/2ab)^2=3/4r^2所以1/2ab=二分之根号3倍的r所以ab=根号3倍的
连接OA,OC,做OM⊥AB垂足为M,交CD于N,∵AB‖CD,∴ON⊥CD,∴AM=1/2AB=3,MN=1,在Rt⊿AOM中,OA=5,AM=3,∴有勾股定理得OM=4,∴ON=OM-MN=4-1
连接OB,作OM⊥AB与M,则BM=4,PM=2,在直角△OBM中,根据勾股定理得到:OM=3;在直角△OPM中根据勾股定理得到:OP=OM2+PM2=13.
∵PC切○O于C点∴OC⊥PC又角P=30°∴OP=2OC=8cm∴PC=√OP²-OC²=√64-16=4√3cm
∠AOB=(1/3)*360=120°由余弦定理Cos∠AOB=[2(r^2)-AB^2]/2(r^2)1/2=(2-AB^2)/2AB=√3
(1)假设第一次相切时,△ABC移至△A′B′C′处,A′C′与⊙O切于点E,连OE并延长,交B′C′于F.设⊙O与直线l切于点D,连OD,则OE⊥A′C′,OD⊥直线l.由切线长定理可知C′E=C′
连结OA和OB,则OA和OB就是圆的半径,都等于1再经过点O做出AB的垂线,交AB于点C,那么OC就平分弦AB了,即AC=√3/2,同时OC也平分角AOB(这好像是叫弦切定理吧,有点儿忘了,吼吼)那么
∵AB是⊙O的弦,OC⊥AB于点C,AB=23,∴BC=12AB=3,在Rt△BOC中,∵BC=3,OC=1,∴OB=OC2+BC2=1+3=2.故选C.