如图,已知ab为圆o的直径,过圆o上的点c的切线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:19:05
如图,已知ab为圆o的直径,过圆o上的点c的切线
如图,AB为圆O的直径,C为圆O上一点,AD和过C点的切线垂直,垂足为D

1.连接BC,∵CD是切线∴OC垂直DC∴AD平行于OC∴△DAF∽△OCF∴AF/FC=AD/OC连接BE交OC于G∵AB是直径∴∠AEB=90°,∵AB是直径∴BE平行于DC∴OG垂直BE∴OG=

急!如图 ab是半圆o的直径,C为圆上一点,过C作半圆的切线

①过C作半圆的切线,∠COB=90度;∠DAC=∠CAB,OA=OC,∠OCA=∠CAB∠COB=∠CAO+∠OCA=∠CAB+∠CAB=∠CAB+∠DAC=∠DAB,OC‖AD,∠ADC=90度;A

圆的切线证明题.如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过AC的中点M,求证:PC是⊙O的切线.

证:因为:M是AC的中点所以:AM=CM,且OM=OM所以:△OAM≌△OCM(边、边、边)由此得:∠AOP=∠COP(全等三角形对应角相等)连接OC,则OC=OA,且OP=OP所以:△AOP≌△CO

已知 如图,AB是圆O一条弦,点C为弧AB中点,CD是圆O的直径,过C点的直线L交AB所在直线于点E,交圆O于点F.

∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE

1、如图,已知三角形ABC中,AB=AC,以AB为直径做圆O交BC与D,过D做DE垂直AC于E,求证:DE是圆O的切线.

1、连接OD∵AB=ACOB=OD∴∠B=∠C∠B=∠ODB∴∠C=∠ODB∴OD∥AC∵DE⊥AC∴DE⊥OD∴DE是⊙O的切线.2、∵AD是⊙O的直径∴∠ACD=90°∴∠DAC+∠D=90°∵∠

如图,已知AB是圆O的直径,半径OC⊥AB,过OC的中点D作EF平行AB,求∠EBA

连接CE、CF、EO、FO.因为EF平行于AB,OC垂直于AB,所以D是EF的中点.又因为D是OC的中点,所以四边形CEOF是平行四边形.又因为CO垂直于EF,所以平行四边形CEOF是菱形.所以CE=

如图AB是圆O的直径,C为圆上一点,过C的切线分别过A,B两点的切线交于P,Q.已知AP=1,BQ=4求圆O的半径

过点P作PD⊥BQ,则可知ABPD为矩形,BD=AP=1PD=ABQD=BQ-BD=-4-1=3由题可知PC=AP=1CQ=BQ=4则PQ=4+1=5在Rt△PDQ中,PD=PQ-QD=5-3则PD=

如图,已知过P点的直线与圆O相交于A,B,AB为圆O的直径,PC为圆O的切线,C为切点,BD⊥PC于D,

1、连接CO,直角三角形POC中,PO=2CO=1,直角边为你斜边的一半,所以角P=30度.2、连接AE,直角三角形ABE中角P=30度,BD=0.5PB=1.5,直角三角形PBD中,角EAB=30度

如图,C为圆O直径AB上的一动点,过点C的直线交圆O

这道题没有具体的函数关系式这道题主要的是看我们的趋势判断能力因为这里面没有数值写不出具体的关系式只能说是一个抛物线的数值关系你们现在还没有学到高中才有的哈你也可以看看http://baike.baid

如图,已知AB为圆O的直径,BD为圆O的切线,过点B的弦BC垂直OD交圆O于点C,垂直为M.当BC等于BD等于6cm时,

证明:连接OC.∵OD⊥BC,O为圆心,∴OD平分BC.∴DB=DC,在△OBD与△OCD中,OB=OCDO=DODB=DC∴△OBD≌△OCD.(SSS)∴∠OCD=∠OBD.又∵AB为⊙O的直径,

已知 如图 AB为圆O的直径C为圆O上一点AD垂直于过点C的切线 垂足为D 求证AC平分角DAB

证明:连接CO.则∠ACO=∠CAO(等腰三角形,两地角相等)∵CD与圆相切,∴CO⊥CD.又∵AD⊥CDAD∥CO∴∠DOC=∠ACO(两直线平行,内错角相等)∠DAC=∠CAO所以:AC平分角DA

如图已知AB是圆O的直径,C为圆O上一点,过点C作圆O的切线CD,若AC平分角DAB,求证:AD垂直DC

证明:在圆o中连接CO∵AO=CO∴∠OAC=∠OCA∵AC平分∠DAC∴∠DAC=∠OAC∴∠OCA=∠DAC∴AD∥OC∵CD为圆O的切线∴OC⊥DC∴AD⊥DC

已知,如图,AB为圆O的直径,圆O过AC的中点D,DE垂直BC于点E.《1》求证:DE为圆O的切线.《2》若DE=2,

(1)证明:连接OD∵AD=DC,AO=OB∴OD是△ABC的中位线∴OD∥BC∵DE⊥BC∴DE⊥OD∴DE是圆O的切线(2)∵AB是直径∴∠ADB=90°∵AD=DC∴BA=BC∵∠BDC=∠CE

如图,AB为圆O的直径,点C在圆O上,过点C作圆O的切线交AB的延长线于点D,已知∠D=30

(1)连接OC,∵CD切⊙O于点C∴∠OCD=90°(1分)∵∠D=30°∴∠COD=60°(2分)∵OA=OC∴∠A=∠ACO=30°;(4分)(2)∵CF⊥直径AB,CF=43∴CE=23(5分)

如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过AC的中点M.

证明:(1)∵AB是直径,∴O是AB中点;又∵M为AC中点,∴OM是三角形ABC中位线,∴MO=12BC;(2)证明:连接OC,∵PA⊥AB,∴∠PA0=90°.(1分)∵PO过AC的中点M,OA=O

已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.

(1)证明:连接OD.∵D为AC中点,O为AB中点,∴OD为△ABC的中位线,∴OD∥BC,∵DE⊥BC,∴∠DEC=90°,∴∠ODE=∠DEC=90°,∴OD⊥DE于点D,∴DE为⊙O的切线;(2

如图,AB为圆O的直径,CD为圆O得弦,

1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的

如图,已知在三角形ABC中,AB=AC,以AB为直径的圆O交BC于点P,过点p作园o的切线pd交ac

证明:连接AP∵AB是⊙O的直径∴∠APB=90°∵AB=AC∴BP=CP(等腰三角形三线合一)∵AO=BO∴OP是△ABC的中位线∴OP//AC∵PD是⊙O的切线∴PD⊥OP∴PD⊥AC