如图,在边长为4的正方形ABCD中,P.Q分别在AB.CB上,BF⊥PQ于F

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 13:43:05
如图,在边长为4的正方形ABCD中,P.Q分别在AB.CB上,BF⊥PQ于F
如图,方格纸中小正方形的边长为1,三角形ABC的三个顶点都在小正方形的格点上,求点C到AB边的距离.

(1)将三角形补成一个矩形S△ABC=S矩形BEFG-S△BEC-S△CFA-S△AGB         &n

如图,在4*4的正方形网格中,三角形ABC和三角形DEF的顶点都在边长为1的小正方形的顶点上.(

因为AB=2,EF=1AC=√16+4=2√5DF=√4+1=√5BC=2√2DE=√2则AB:EF=AC:DF=BC:DE再答:则两个三角形相似

如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,求:

解(1)S△ABC=3×3-(12×3×1+12×2×1+12×2×3)=72;(2)AC=2 2+1 2=5;(3)设点B到AC边的距离为h,则S△ABC=12×AC×h=72,

如图,网格中小正方形的边长均为1如图,网格中小正方形的边长均为1,△ABC的三个顶点在格点上,则△ABC中AB上

∵三角形ABC的AC=3,BC=6,∠ACB=90°三角形CDE的CD=2,CE=4,∠DCE=90°所以三角形ABC相似与三角形CDE所以∠BAC=∠CDE又因为ED的延长线交AB于F所以∠BDF=

如图,网格中小正方形的边长均为1,△ABC的三个顶点在格点上,则△ABC中ab的高为

由勾股定理得AB=根号13AC=根号13BC=根号2所以三角形ABC是等腰三角形过A点做AD垂直BC于D可知AD平分BC所以BD=CD=1/2BC由勾股定理得AD=根号26/2由等积法可得BC*AD=

如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.判断△ABC与△DEF是否相似,并

△ABC∽△DEF.由图可得:AB=2,BC=22,AC=25;DE=2,EF=2,DF=10,∴ABDE=BCEF=ACDF=2,∴△ABC∽△DEF.

如图,在4×3的正方形网格中,三角形ABC 与 三角形DEC 的顶点都在边长为1的小正方形的顶点上.

首先,为了好理解,先把图中的一些要用到的点标柱上符号:直线AB与C点所在的直线的交点为J点,直线DE与直线JC的交点为L点,水平方向上C所在的直线从左至右的点依次标注为H、G、F点.假设每一个小正方形

如图,网格上的小正方形边长均为1,△ABC的三个顶点在格点上,则△ABC中AB边上的高为多少?

BC=√2A到BC的高为3√2-√2/2=5√2/2AB=√13△ABC中AB边上的高为(√2*5√2/2)/√13=5√13/13(△面积有1/2的此处分子分母约去了)

如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为______.

如图∵在Rt△ABC中∠C=90°,放置边长分别3,4,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF,∵EF=x,MO=3,PN=4,∴OE=x-3,PF=x-4,∴(x-

如图,网格中每个小正方形的边长均为1,△ABC的顶点在格点上,在边的左侧分别以△ABC

图呢没图再问:画的有点差 拜托一下再答:ֱ���������Ӱ=ֱ������ε����  ������˼�������Щ����ƽ��

(体验过程题)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,填空:∠ABC=∠_

由图可计算得到△ABC的各边分别为2,22,25.△DEF的各边分别为2,2,10.则三组对应边的比相等则△ABC∽△DEF.从而得到∠ABC=∠DEF.因为小正方形的边长为1,则根据勾股定理可以求得

如图,已知中间的正方形边长为4,求△abc的面积.《答案是16,  一个正方形的面积是10平方米,在

如图,连接AF、CD可知:AF∥BE∥CD,所以由平行线间的距离处处相等,易得S⊿ABC=S⊿ABE+S⊿CBE=S⊿FBE+S⊿DBE=S正方形BDEF=16设正方形的边长为a米,则a=√10   

(2013•北京)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面A

Ⅱ   作A1M⊥B1C1,则A1M⊥BCC1B1﹙∵A1B1C1⊥BCC1B1﹚作A1N⊥BC1,则MN⊥BC1﹙三垂线﹚  ∠A1NM=α是A1-

(2013•北京)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.

(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(II)由AC=4,BC=5,AB=3.∴AC2+AB2

如图 ,ABC和DEF在4x4的正方形网格中 他们的顶点都在边长为1的小正方形顶点位置 试判断ABC与DEF是否相似

相似因为AB=√20BC=√8AC=2DF=√2DE=√10EF=2AB/DE=AC/DF=BC/EF=√2所以△ABC∽△DEF

如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.证明:△ABC∽△DEF

直接计算对应的边的比值AB/DE=√2AC/DF=√2BC/FE=√2三边对应比值相等所以:△ABC∽△DEF

正方形ABC的边长为3+根号3,(1),如图,正方形EFPN的顶点E,F在边AB上,顶点N在AC边上,

既然是正三角形,则角A=角B=60度N'E'是正方形的边长,所以在三角形AE'N'中,AE'=√3/3N'E再问:请问是定理还是?如果不是,需要过程,中间的一步,关键的∠AN'E'=30°,30°所对