如图,在角ABC中BC=2,BC=4,角ABC的高AD与CE的比是多少
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:12:17
CE=AE=>角EAC=角AEC角ACD(角C)=角EAC+角AEC=2角AEC=2角B=>角AEC=角B=>AE=AB=>ED=DB(等腰三角形的高即为中线)=>BD=DE=EC+CD=AC+CD
/>在BC在作点E,使CE=AC,连接DECD是△ABC的角平分线∠ACD=∠ECDAC=CE,CD=CD所以,三角形ACD与三角形ECD全等AD=DE;∠A=∠CEDBC=AC+AD=BE+CE=A
A在BC边上的高为AB*sinB=根号2定义为h设正方形边长为a则由于FG平行于CB有△AGF相似于△ABC相似比为高的比即为(h-a):h也为GF:BC=a:2从而有(根号2-a):(根号2)=a:
过B作∠B的角平分线交AC于D∠CDB=∠B△CAB∽△CBDCB/CA=CD/CBCB²=CA×CD角平分线分线段成比例定理AD/DC=AB/BCAC/DC=(AB+BC)/BCDC=AC
这位同学.请提供一些题目的图片.可发送图片至:t0716@126.com1【解】因为当F与C点重合的时候,D正好在斜边AB上,因此可以通过此时两个三角形的关系求出三角形DEF的边长.当D在斜边AB上的
延长CA,取点E使AE=AD,连接DE.则∠ADE=∠AED因为∠CDA=∠ADE+∠AED=2∠B所以∠B=∠AED因为∠BCD=∠ACD所以∠CDB=∠CDE又因有公共边CD所以△BCD△CED全
解题思路:根据等腰三角形三线合一的性质可得∠DAC=1/2∠BAC=20,∠ADC=90从而可得∠CDE解题过程:
∠CBD+∠C=∠ADB∠CBD=2∠C=2∠CBD又因为∠A=∠A所以▲ADB≌▲ABC所以AD:AB=AB:CD=BD:BC
取AC中点N,连接DN,MN,MN=1/2AB,
ABD为直角三角形,N为中点,所以BN=ND所以角B=角NDB因为M,N为BC,AB中点,所以MN平行于AC所以角NMD=角C=1/2角B因为角NMD+角DNM=角NDC=角B所以角NMD=角DNM=
应该证明:ab=ac+cd,在AB边取E使AE=AC,连接DE,∵AD平分∠BAC,∴∠EAD=∠CAD,AD为共用边,则△EAD≌△CAD,AE=AC,ED=CD,∠ACD=∠AED,∠AED=∠B
在BC上作CE等于CA,连接DE因为CD平分角ACD所以角ACD等于角DCE(角平分线定义)在三角形ACD与三角形DCE中AC=EC(所作)角ACD=角DCE(已证)DC=DC(公共边)所以三角形AC
根据你的描述,我可以知道你的∠1指的是∠DAC,对么?如果是,则因为AD⊥BC所以∠ADC=90°,所以∠DAC+∠ACD=180°-∠ADC=90°,即∠1+∠ACD=90°,因为∠1=∠B,所以∠
证明:在BC上取CE=AC,连接DE因为CD是角平分线所以∠ACD=∠ECD又因为CD=CD所以△CAD≌△CED(SAS)所以AD=DE,∠A=∠CED因为∠A=2∠B所以∠CED=2∠B因为∠CE
结合图像自己对照证明:在BC上取点E,使CA=CE所以△ACD全等于△ECD(SAS)所以:角A=角CED因为:∠A=2∠B所以:∠CED=2∠B又因为:∠CED=∠B+∠BDE所以:∠B=∠BDE所
由AD⊥BC,∠B=∠1=∠CAD,(1)∴△ABD中,∠B+∠BAD=90°,(2)将(1)代入(2)得:∠1+∠BAD=∠BAC=90°,∴△ABC是直角三角形.
BD=DE;理由:过P作PF⊥BD于F,四边形DFPE为矩形,PF=DE,∵∠ABD+∠DBC=90°,∠A+∠ABD=90°,∴∠A=∠DBC.在△ABD和△BPF中,{∠ADB=∠BFPAB=BP
证明:延长CA到E,使AE=AD,连接ED∵AE=AD,∴∠E=∠ADE,∴∠CAD=∠E+∠ADE=2∠E,∵∠CAD=∠2∠B∴∠E=∠B,∠ECD=∠BCD,AD=AD∴△ECD≌△BCD∴BC
1.在BC上取点E,使CE=CA证明△ACD≌△CDE=>AC=CE∠A=∠DEC=2∠B=>AD=DE=BEBC=BE+EC=AD+AC2.过A作BC垂线交BC于E,所以AE是垂直平分线证明△BCD
(1)如图;(2)BD=DE;理由:过P作PF⊥BD于F,则四边形DFPE为矩形,PF=DE,∵∠ABD+∠DBC=90°,∠A+∠ABD=90°,∴∠A=∠DBC.在△ABD和△BPF中,∠ADB=