如图,在等边△ABC中,D为BC边上的一点,△DEC是等边三角形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:28:26
如图,在等边△ABC中,D为BC边上的一点,△DEC是等边三角形
如图,在△ABC中,以AB、AC为边作等边△ABE、△ACF,以BC为边作等边△BCM

(1)四边形AEMF是平时四边形证明:∵∠MCB=∠ACF=60°∴∠ACB=∠MCF∵BC=CM,CA=CF∴△ABC≌△FMC∴MF=AB=AE同理可得△ABC≌△EBM∴AE=AC=AF∴四边形

如图,A、B、C、D是空间四点,在△ABC中,AB=2,AC=BC=2,等边△ADB所在的平面以AB为轴可转动.

(Ⅰ)取AB的中点E,连接DE,CE,因为ADB是等边三角形,所以DE⊥AB.当平面ADB⊥平面ABC时,因为平面ADB∩平面ABC=AB,所以DE⊥平面ABC,可知DE⊥CE由已知可得DE=3,EC

如图,在等边△ABC中,D是AB边上的动点,(不与A、B点重合),以CD为一边,向上作等边△EDC,连接.观察并猜想AE

因为cd等于cebc等于ac角bcd等于角ace(60度减角acd)所以三角形bcd全等于三角形ace所以角eac等于角dbc等于角acb等于60度所以ae平行于bc回答完毕

如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=1,CD=23,则△ABC的边长为(

设△ABC的边长为x,∵△ABC是等边三角形,∴∠DCP=∠PBA=60°.∵∠APC=∠APD+∠DPC=∠BAP+∠ABP,∠APD=60°,∴∠BAP=∠CPD.∴△ABP∽△CPD.∴BPDC

如图,等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE‖BC.

证明:∵△ABC和△CDE均为等边三角形∴AC=BC,CD=CE又∠BCD+∠ACD=∠ACE+∠ACD=60°∴∠BCD=∠ACE∴△BCD≌△ACE∴∠CAE=∠B=∠ACB=60°∴AE∥BC再

如图,等边△ABC中,D是AB边上的动点,以CD为一边向上作等边△EDC.连接AE.

可以证明三角形BCD和三角形ACE全等(SAS)然后得到角EAC=角ABC=60度就能证明平行了(内错角定理)

(1)如图1所示,在等边△ABC中,点D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE∥BC;

证明:(1)∵△ABC和△EDC是等边三角形∴∠ACB=∠ECD=60°,AC=CB,EC=DC,∴∠ACD+∠BCD=∠ACE+∠ACD,∴∠BCD=∠ACE,∴△ACE≌△BCD,∴∠EAC=∠B

已知:等边△ABC中,AB=8,点D为AB的中点,点M为BC上一动点,以DM为一边,在点B异侧作等边△DMN.DN交AC

作DH⊥BC于H在等边三角形中,∠B=∠MDN=60°,DM=DN∵∠B+∠BMD=∠MDN+∠ADN(三角形的一个外角等于不相邻两个内角之和)∴∠BMD=∠ADN∵∠DAN=∠DHM=90°∴⊿DA

如图,以等腰直角三角形ABC的斜边AB为边向内作等边△ABD,连接DC,以DC为边作等边△DCE.B、E在C、D的同侧,

∵等腰直角三角形ABC中,AB=2,∴AC=22AB=1,∵等边△ABD和等边△DCE,∴AD=BD,CD=ED,∠ADB=∠CDE,∴∠ADC=∠BDE,在△ADC和△BDE中,AD=BD∠ADC=

如图,在Rt△ABC中,△ACB=90 ,CD⊥AB于点D,分别以AC、BC为边向三角形外作等边三角形△ACE和等边△B

证:连接DE,CF.由题设得:△ADC~△BDC.(Rt△,A.A.A)∴AD:CD=AC:BC=AC:BC=AE:CF.∴AD:AE=CD:CF.又,∠BCD=∠DAC(与同一角互余的角相等)∠BD

如图,在等边△ABC中,线段AM为BC边上的中线,动点D在直线AM上时,以CD为一边且在CD的下方作等边△CDE,连接B

(1)60(2)∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=

如图,在等边△ABC中,线段AM为BC边上的中线,动点D在直线AM上时,题目打不下,打下面.

(1)60(2)∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=

2010•聊城)如图,在等边△ABC中,点D是BC边的中点,

解题思路:平行四边形性质解题过程:见附件同学你好祝你天天开心!最终答案:略

(2012•延庆县二模)如图,等边△ABC中,边长AB=3,点D在线段BC上,点E在射线AC上,点D沿BC方向从B点以每

过点D作DF⊥AC于点F,∵点D的速度是每秒1个单位,∴CD=3-t,∵△ABC是等边三角形,∴∠ACB=60°,∴DF=CD•sin60°=32(3-t),①点E在AC上时,∵点E的速度是每秒2个单

如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=4,D为线段AB上一个动点,以BD为边在△ABC外作等边

解题思路:本题考查勾股定理,二次函数最值,请看详细解答过程。解题过程:

如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.

(1)证明:∵△ABC与△DCE是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠ECB+∠DCB=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS

如图1,在等边△ABC中,线段AM为BC边上的中线,动点D在直线AM(点D与点A重合除外)上时,以CD为一边且在CD

(1)AD=BE.理由如下:∵△ABC,△CDE都是等边三角形,∴AC=BC,CD=CE,∵∠ACD+∠BCD=∠ACB=60°,∠BCE+∠BCD=∠DCE=60°,∴∠ACD=∠BCE,在△ACD

如图,在等腰Rt△ABC中,AC=BC.以斜边AB为一边做等边△ABD,使点C,D

因为△ABC为等腰直角三角形,且△ABD为等边三角形所以容易看出CD为∠ADB的角平分线,所以∠ADC=30°又△CDE为等边三角形,所以∠ADE=30°,那么AD为∠CDE的角平分线因为△CDE为等

28、如图,等边△ABC中AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在AD下方作等边△CDE,连BE(1)

(1)证明:因为△ABC和△CDE都是等边三角形,所以AC=BC,DC=CE,∠ACB=∠DCE=60°,则∠ACB-∠DCO=∠DCE-∠DCO,即∠DCA=∠BCE.所以△ACD≌△BCE,故AD

如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=4,CE=43,则△ABC的面积为

∵△ABC是等边三角形,∠ADE=60°,∴∠B=∠C=∠ADE=60°,AB=BC,∵∠ADB=∠DAC+∠C,∠DEC=∠ADE+∠DAC,∴∠ADB=∠DEC,∴△ABD∽△DCE,∴ABDC=