如图,在等边△ABC中,D为BC边上的一点,△DEC是等边三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:28:26
(1)四边形AEMF是平时四边形证明:∵∠MCB=∠ACF=60°∴∠ACB=∠MCF∵BC=CM,CA=CF∴△ABC≌△FMC∴MF=AB=AE同理可得△ABC≌△EBM∴AE=AC=AF∴四边形
(Ⅰ)取AB的中点E,连接DE,CE,因为ADB是等边三角形,所以DE⊥AB.当平面ADB⊥平面ABC时,因为平面ADB∩平面ABC=AB,所以DE⊥平面ABC,可知DE⊥CE由已知可得DE=3,EC
因为cd等于cebc等于ac角bcd等于角ace(60度减角acd)所以三角形bcd全等于三角形ace所以角eac等于角dbc等于角acb等于60度所以ae平行于bc回答完毕
设△ABC的边长为x,∵△ABC是等边三角形,∴∠DCP=∠PBA=60°.∵∠APC=∠APD+∠DPC=∠BAP+∠ABP,∠APD=60°,∴∠BAP=∠CPD.∴△ABP∽△CPD.∴BPDC
证明:∵△ABC和△CDE均为等边三角形∴AC=BC,CD=CE又∠BCD+∠ACD=∠ACE+∠ACD=60°∴∠BCD=∠ACE∴△BCD≌△ACE∴∠CAE=∠B=∠ACB=60°∴AE∥BC再
可以证明三角形BCD和三角形ACE全等(SAS)然后得到角EAC=角ABC=60度就能证明平行了(内错角定理)
证明:(1)∵△ABC和△EDC是等边三角形∴∠ACB=∠ECD=60°,AC=CB,EC=DC,∴∠ACD+∠BCD=∠ACE+∠ACD,∴∠BCD=∠ACE,∴△ACE≌△BCD,∴∠EAC=∠B
作DH⊥BC于H在等边三角形中,∠B=∠MDN=60°,DM=DN∵∠B+∠BMD=∠MDN+∠ADN(三角形的一个外角等于不相邻两个内角之和)∴∠BMD=∠ADN∵∠DAN=∠DHM=90°∴⊿DA
∵等腰直角三角形ABC中,AB=2,∴AC=22AB=1,∵等边△ABD和等边△DCE,∴AD=BD,CD=ED,∠ADB=∠CDE,∴∠ADC=∠BDE,在△ADC和△BDE中,AD=BD∠ADC=
证:连接DE,CF.由题设得:△ADC~△BDC.(Rt△,A.A.A)∴AD:CD=AC:BC=AC:BC=AE:CF.∴AD:AE=CD:CF.又,∠BCD=∠DAC(与同一角互余的角相等)∠BD
(1)60(2)∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=
(1)60(2)∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=
解题思路:平行四边形性质解题过程:见附件同学你好祝你天天开心!最终答案:略
过点D作DF⊥AC于点F,∵点D的速度是每秒1个单位,∴CD=3-t,∵△ABC是等边三角形,∴∠ACB=60°,∴DF=CD•sin60°=32(3-t),①点E在AC上时,∵点E的速度是每秒2个单
解题思路:本题考查勾股定理,二次函数最值,请看详细解答过程。解题过程:
(1)证明:∵△ABC与△DCE是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠ECB+∠DCB=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS
(1)AD=BE.理由如下:∵△ABC,△CDE都是等边三角形,∴AC=BC,CD=CE,∵∠ACD+∠BCD=∠ACB=60°,∠BCE+∠BCD=∠DCE=60°,∴∠ACD=∠BCE,在△ACD
因为△ABC为等腰直角三角形,且△ABD为等边三角形所以容易看出CD为∠ADB的角平分线,所以∠ADC=30°又△CDE为等边三角形,所以∠ADE=30°,那么AD为∠CDE的角平分线因为△CDE为等
(1)证明:因为△ABC和△CDE都是等边三角形,所以AC=BC,DC=CE,∠ACB=∠DCE=60°,则∠ACB-∠DCO=∠DCE-∠DCO,即∠DCA=∠BCE.所以△ACD≌△BCE,故AD
∵△ABC是等边三角形,∠ADE=60°,∴∠B=∠C=∠ADE=60°,AB=BC,∵∠ADB=∠DAC+∠C,∠DEC=∠ADE+∠DAC,∴∠ADB=∠DEC,∴△ABD∽△DCE,∴ABDC=