如图,在矩形abcd中点ef分别在边bcad上连接ef交ac于点o
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:04:26
四边形MENF为菱形 ∵M,N为AD与BC中点∴BM=CM 又∵E,F为BM与CM中点∴EN=EM(直角三角形斜边中线长度等于斜边的一半) ∴EN=EM=FM=FN ∴四边形MENF为菱形
因为BE是角ABC的平分线,所以三角形BCE是等腰三角形,CE=BC=AD.因为AE垂直EF,所以角CEF=角DAE.所以三角形CEF与三角形CAE全等,AE=EF.
(1)要求两三角形相似,已知条件有一组直角,我们只需再证得一组对应角相等即可得出两三角形相似,根据FE⊥EC,因此∠AEF和∠DCE都是∠DEC的余角,因此∠AEF=∠DCE,我们只要再得出∠BCE=
延长A1E交CD于点G,由题意知,GE=EH,FH=GF,四边形EHD1A1≌四边形EGDA,∴AD=A1D1,AE=A1E,DG=D1H,FH=FG,∴阴影部分的周长=矩形的周长=(12+6)×2=
(F点为ab线上的点)你可以先证明△EDC与△AEF相似,这个不用介绍了得出相似比EF:AE=EC:CD因为AE=EDEF:ED=EC:CD即EF:EC=ED:CD(这个条件就是证明△EDC与△EFC
1)相似证明:延长FE,CD交于点PAE=ED角AEF=角EPD所以直角三角形AEF和EPD全等所以FE=EP即EC为FP中垂线所以角FCE=角ECD所以直角三角形EFC相似于EDC且直角三角形EDC
延长A′E交CD于点G,由题意知,GE=EH,FH=GF,四边形EHD′A′≌四边形EGDA∴阴影部分的周长=矩形的周长=(12+6)×2=36cm.故选B.
设AD=2x,AB=b,DG=AF=a,则FB=b-a,∵∠GEC=90°,ED⊥CD,∴ED2=GD•CD∴x2=ab,假定△AEF与△BFC相似,则有两种情况:一是∠AFE=∠BCF;
⑴ΔAEF∽ΔDCE.理由:∵ABCD是矩形,∴∠A=∠D=90°,∴∠2+∠3=90°,∵EF⊥CE,∴∠1+∠2=90°,∴∠1=∠3,∴ΔAEF∽ΔDCE.⑵设两个三角形相似,∵∠EFC是锐角,
∵EF⊥AC,点G是AE中点,∴OG=AG=GE=12AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°,∴△OGE是等边三角形,故(3)正确;
(1)四边形BEDF是菱形.在△DOF和△BOE中,∠FDO=∠EBO,OD=OB,∠DOF=∠BOE=90°,所以△DOF≌△BOE,所以OE=OF.又因为EF⊥BD,OD=OB,所以四边形BEDF
16:9AD即为新的矩形的长边俩矩形又相似
证明:∵矩形ABCD∴∠BAD=∠C=∠D=90,AD=BC∴∠CBE+∠BEC=90∵BE⊥EF∴∠BEF=90∴∠FED+∠BEC=180-∠BEF=90∴∠FED=∠CBE∵BE=EF∴△BCE
因为ABCD为矩形,EF分别是AB,CD的中点所以AE//DF且AE=DF所以AEFD为平心四边形又因为角A=90°所以AEFD为矩形
根据题意,E,F为AD,BC的中点.即AE=AD/2∴AE/AB=AB/2AEAE=3√22AE=AD=6√2相似比:AD/AB=6√2/6=√2/1再问:AD的长怎么求来着……我忘了再答:AD=2A
如图, ∵AO=CO,∠OAD=∠OCB(内错角),∠AOE=∠COF=90∴△AOE≌△COF, OE=OF∴AECF是菱形(对角线互相垂直且平分的四边形是菱形)
∵ABCD为矩形∴OE=OF且OB=OC又∵角EOB=角FOC∴△EOB全等于△FOC∴EB=FC在△AOD中,E、F为OA、OD中点∴EF‖AD∵AD‖BC∴EF‖BC
证明:∵E是OA的中点,F是OD的中点∴EF是△AOD的中位线∴EF//AD∵四边形ABCD是矩形∴AD//BC∴EF//BC
AD+AB=8,AB*AD=12,AB=2,AD=6或AB=6,AD=2BE/BD=3/4△BEG与△ABD相似当AB=2,AD=6时AB=CD=2,AD=BC=6BE/BD=EF/CD3/4=EF/
1、∵ABCD是矩形∴OA=OD=OB=OCAD∥BC∵E、F分别是OA、OD中点∴EF是△AOD中位线∴EF∥AD∴EF∥BC2、∵∠BOE=∠COF(对顶角相等)OB=-OC,OE=OF=1/2O