如图,在直角三角形ADE中,角CBA等于角EAD等于90度,AE等于BC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:36:26
直角三角形,和abc相似,有两个角角度一样
如图: 线段BD绕A逆时针旋转90º,到达CE.B到达C,D到达E.∴BD=CE, BD⊥CE.
角1=角4,6,7角2=角3,5
∠ADE,∠BDE其中一个再加上∠AED,∠CED其中一个
(1)证明:延长DM交BC于N,∵∠EDA=∠ABC=90°,∴DE∥BC,∴∠DEM=∠MCB,在△EMD和△CMN中∠DEM=∠NCMEM=CM∠EMD=∠NMC,∴△EMD≌△CMN,∴CN=D
延长ED交BC于H,连结AF、FH、HG,因为△ACB、△ADE都为等腰直角三角形,所以∠ACH=90°,∠AEH=90°,∠CAD=45°,∠EAD=45°,所以∠CAE=∠CAD+∠EAD=90°
(1)△ABC∽△ADE,△ABD∽△ACE(2分)(2)①证△ABC∽△ADE,∵∠BAD=∠CAE,∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.(4分)又∵∠ABC=∠ADE,∴
这就是一道计算题∵RT△ABC.∴∠CAB+∠ABC=90°.又∵AD,BE分别是∠CAB,∠ABC的角平分线.∴1/2∠CAB+1/2∠ABC=45°.即∠DAB+∠EAB=45°=∠ADE(三角形
△ABD∽△ACE你已经证明△ABC∽△ADE那么得AB/AC=AD/AE∠BAD=∠CAE△ABD∽△ACE(边角边)
证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH
是否是求证:CF=EF?如果是的话证明:连接AF∵△ABC≌△ADE∴AB=AD,BC=DE∵∠ABC=∠ADE=90,AF=AF∴△ABF≌△ADF(HL)∴BF=DF∵CF=BC-BF,EF=DE
相似因为∠BAD=∠CAE,所以∠BAC=∠DAE又因为∠ABC=∠ADE所以△ABC∽△ADE所以AD/AE=AB/AC在△ABD和△ACE中AD/AE=AB/AC,∠BAD=∠CAE所以△ABD∽
连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5
证明:∵∠BAC=∠EAD=90°,∴∠BAD=∠CAE,又AB=AC,AE=AD,所以△BAD≌△CAE所以CE=BD,且∠AEC=∠ADB所以∠CED+∠EDB=∠CED+∠ADB+∠ADE=∠C
三个分别是圆外,圆上,圆外,用勾股定理可以算出来AB=5,然后可以算出高CD=2.4再问:额,谢谢啦再答:第三个是圆内…再答:写错了,骚瑞再问:有没有详细一点的呢?再答:勾股定理你应该熟悉吧…再问:嗯
已知△ADE与△ACB都是等腰直角△∴△ADE∽△ACB则对应边成比例:AD/AC=AE/AB → AD/AE=AC/AB则:△ADC与△AEB的对应边也成比例,∴△ADC∽△AEB∠ACD=∠ABE
(1)△ABD与△ACE全等(AB=AC,角BAD=角CAE=90度+角CAD,AD=AE)[SAS]所以BD=CE(2)角AEC=角ADB(因为△ABD与△ACE全等),角AOE=角MOD,所以角E
(1)△ABE≌△ACB∵,△ADE、△ABC是等腰直角三角形,∴AB=ACAD=AE角BAC=∠EAD=45°∵AB=ACAD=AE角BAC=∠EAD=45°∴△ABE≌△ACB(SAS)(2)∵△
反复运用勾股定理、等量代换就可以了.PA²=(AD+PD)²1PB²=(BD-PD)²2其中AD=BDPC²=CD²+PD²=AD
(1)∵∠BAD=∠CAE,∠DAC=∠DAC.∴∠BAC=∠DAE,又∵∠ABC=∠ADE.∴△ABC∽△ADE,(AA)∴AB:AC=AD:AE°∵∠BAD=∠CAE∴△ABD∽ACE(SAS)(