如图,在正方形abcd中,pa等于a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:16:02
证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE
(1)由等腰△APD三线合一知AG⊥PD,且PD⊂面PCD,故AG⊥面PCD;(2)又面PEC⊥面PDC,且AG⊄面PEC,故AG//面PEC;(3)先证明点E是AB的中点(不
(Ⅰ)证明:∵CD⊥AD,CD⊥PA∴CD⊥平面PAD∴CD⊥AG,又PD⊥AG∴AG⊥平面PCD &nb
135度.将三角形ABP顺时针旋转90度,由于ABCD是正方形,所以AB与BC重合,记此时旋转后的P点是Q.三角形ABP和三角形CBQ全等.所以BQ=BP=2,AP=CQ=2根号2,而且角ABP=角C
将△APB绕B顺时针旋转90度,得△CQB,则QP=2根号2,∠CQP=90度CQ=1,所以PC=3
图①:△BEA≌△AFD∴BE=AFAE=DF∴BE=AF=AE+EF=DF+EF.图②:△AEB≌△DFA∴BE=AFAE=DF∴DF=AE=AF+EF=BE+EF.再问:我不会图三的再答:同理,图
①连BD,交AC于O,连OE∵ABCD是正方形∴O是BD中点又E是PD中点∴OE是△DBP的中位线∴PB∥OE∵OE∈平面EAC∴PB∥平面EAC②∵PA⊥平面PDC∴PA⊥DC∵ABCD是正方形∴D
(1)连结BD,AC交于O.∵ABCD是正方形,∴AO=OC,OC=12AC连结EO,则EO是△PBD的中位线,可得EO∥PB∵EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC(2)∵PA⊥平面
解题思路:证明三角形全等可求。∵PC=PB,∴∠PBC=∠PCB,又∠ABC=∠BCD=90°,∴∠ABP=∠DCP又∵AB=CD,∴△ABP≌△DCP(SAS)∴PA=PD。解题过程:
AG⊥PDAG⊥CD﹙∵CD⊥ADP而AG∈ADP﹚∴AG⊥PDC面PEC垂直面PDC∴AG平行PEC
(1)∵PA⊥平面PDC∴PA⊥DC∵ABCD是正方形∴DC⊥AD∵PA∩AD=平面PAD∴DC⊥平面PAD∵DC∈平面ABCD∴平面ABCD⊥平面PAD得证(2)取AD的中点为H,过H作HM⊥AC交
存在.先在PA上在到一点Q1,即AP的中点所以有EQ1,将EQ1绕着点E将Q1平移到PD上即为PD上的中点
题目有误,应该是PA=AD1.∵面PAD⊥面ABCD∴∠PDA就是PD与底面所成的角即∠PDA=45°又PA=AD∴PA⊥AD又面PAD⊥面ABCD∴PA⊥面ABCD2.Q为PD中点:连DE延长交CB
证明:在Rt△CDE中,CP⊥DE∴∠CPD=∠ECD=90°,且∠EDC为公共角,∴Rt△PCD∽Rt△CED,∴PCCE=PDCD,∵CE=CF,CD=AD,∴PCCF=PDAD,∵∠PCD+∠C
(1)因PA垂直底面ABCD,所以PA垂直BD又因底面ABCD为正方形,所以BD垂直ACPA、AC是在平面PAC内因此BD垂直平面PAC(2)45度PA垂直底面ABCD角PAD为90度又因PA=AB,
ABCD面积为1PAB面积为0.5PAD面积为0.5PB=√2AC=√2PC=√3PBC是直角三角形同理PCD也是直角三角形面积为0.5√2四棱锥表面积为2+√2
画出个基本图形出来!1)要使PQ垂直QD,只需QD垂直平面PAQ,则需QD垂直PA,QD垂直QA!(QD垂直PA不用我多说)设BQ为x,那么QC为a-x!根据三角形ABQ与CDQ相似,有(a-x)/2
(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG