如图,在正方形abcd中,m是cd上的一点,且角bae=2角dam
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:07:46
证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE
证明(1)连接AC交BD于O,连接OE∵ABCD是正方形∴OC=OA∵E是PC中点∴EC=EP∴OE||PA∵OE在面EDB内∴PA//平面EDB(2)∵ABCD是正方形∴BC⊥CD∵PD⊥底面ABC
(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E
由N往AE引垂线NF,交AE于F∵DM⊥MN∴∠NME+∠AMD=90°∴∠NME=∠ADM在△ADM与△FMN中∵DM=MN,∠ADM=∠FMN,∠DAM=∠MFN=90°∴△ADM≌△FMN∴AM
第三个问题:利用赋值法,令SA=AB=AD=DC=1,则容易求出:SD=AC=√2、SC=√3.∵AN⊥SC,∴由射影定理,有:AC^2=CN×SC,∴CN=AC^2/SC=2/√3=(2/3)√3,
如图,DG/EC=4/1 ∴FM/FC=3/5 设AF=a 则FM=3a/√5 cos∠AFM=-1
证明(1)连接A1C1∵M是A1B中点,N是BC1中点∴MN//A1C1∵A1C1在面A1B1C1D1内∴MN//平面A1B1C1D1∵正方体∴面A1B1C1D1//面ABCDMN不在面ABCD内∴M
设AB=4.则BE=√20,EF=√5,BF=5.BE²+EF²=BF²∴∠BEF=90º.BE⊥EF.无量寿佛,佛说苦海无涯回头是岸!施主,我看你骨骼清奇,器
证明:(1)在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°,∵AM⊥MN,∴∠AMN=90°,∴∠CMN+∠AMB=90°.在Rt△ABM中,∠MAB+∠AMB=90°,∴∠CMN=∠M
证明:(1)如图,连接DN,∵四边形ABCD是正方形,∴DN⊥AC∵DF⊥平面ABCD,AC⊂平面ABCD,∴DF⊥AC又DN∩DF=D,∴AC⊥平面DNF∵GN⊂平面DNF,∴GN⊥AC(2)取DC
证明:∵四边形ABCD是正方形∴OA=OB,∠BAM=∠CBN=45°∵MN‖AB∴OM=ON∴AM=BN∵AB=BC∴△ABM≌△CBN∴BM=CN
过点N作NE⊥AB于E易得△DAM∽△MEN所以NE/ME=AM/AD因为BN是平分角CBE,所以NE=BE可设NE=a、BE=a、BM=b、AM=c,则AD=AM+BM=b+c所以a/(b+c)=c
连接BD交AC于O,则OB=ODOB=ODDM=MSSB∥MOMO∈平面ACM所以SB∥平面ACM过M作MH∥SA交AD于H,则MH⊥平面DAC过H作HF∥BD交AC于E,则HF⊥AC,连接ME则角M
证明:连接AC,交BD于O,连接MO∵四边形ABCD是正方形∴AO=CO∵M是VC的中点∴MO是△VAC的中位线∴MO//VA∵MO在面BDM内∴VA//平面BDM
(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG
参考:延长AB和DN相交于点平P..先证△NBP≌△NCD,再证明MP=MD,从而∠MDP=∠P=∠CDN.
学习一下思路切来的(2012•鸡西)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=
设AC、DM的交点是P,因为AM//DC,所以角PDC=角PMA,角DCP=角MAP,所以三角形DPC相似于三角形MPA所以它们的高之比h1:h2=1:2设正方形的边长为a,h1=1/3a,h2=2/
在AD上截取中点F,连接MF∵正方形ABCD中,M是AB的中点∴DF=MB=MA∴ΔMFD≌ΔMBN∴MD=MN