如图,在正三角形abc的外接圆的劣弧bc上任取一点p
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:17:29
是1:2设圆的半径为R,则外正三角形的高为3R,内三角形的高为3/2R(3/2):3=1:2再问:我算起来也是1:2,为什么答案上是1:4啊再答:1:2是相似线段的比例,1:4是面积的比例再问:肯定是
证明:(1)∵AC=BC∴∠CAB=∠CBA,又∵E是内心,∴∠1=∠2=∠3=∠4.∴BE=AE;(2)∵∠BED=∠1+∠3,∠EDB=∠2+∠5,又∵∠5=∠4,∴∠BED=∠EDB,∴BD=D
(1)由E是△ABC内心,∴AE,BE,CE是三内角平分线交点.∴∠BAD=∠CAD,∴BD=CD(同圆或等圆中,圆周角相等,所夹弦相等).(2)∵∠BAD=∠CAD=∠CBD由∠BED=1/2∠BA
三角形ABC为等边三角形时,它的面积最大.它的面积为三角形的边*高/2边=√[R^2+(R/2)^2]*2=√5*R高=R+R/2=3/2R面积=√5R*3/2R/2=3/4*√5*R^2r=a/2/
= a/2 /sin60度 = (根号3)a/4外接圆面积 S = 3.14&nb
(1)由E是△ABC内心,∴AE,BE,CE是三内角平分线交点.∴∠BAD=∠CAD,∴BD=CD(同圆或等圆中,圆周角相等,所夹弦相等).(2)∵∠BAD=∠CAD=∠CBD由∠BED=1/2∠BA
作出正三角形ABC的圆心O,连接OA,过点O做OM⊥AB,交点为M,则OA=R,MO=内切圆半径r正三角形∠OAM=30ºsinOAM=MO/OA=r/R=sin30º=1/2∴内
正弦定理a/sinA=2R(R为外接圆的半径)边长为aa=2R*sin60°=√3*R边心距d是外接圆半径的一半d=R/2周长=3√3*R面积S=3*边长*边心距/2=3√3*R^2/4
知道是正六边形了,知道是正三角形了,说明三个小三角形全等,又说明了正六边形的周长为三角形的两天变,连接AO,过目点垂直于AC交于O1,OO1=1/2m,求出AO1,4AO1就是答案
连接圆心O和A点成OA,过O点作垂线垂直于AB,垂足为D由题得OA平分∠BAC,D为AB的中点在△OAD中,∠BAO=30°,∠ODA=90°,∠DOA=60°OA=R,所以OD=R/2;DA=R*√
过圆心O作OF⊥BC于F∵△ABC为正三角形∴∠BAC=60∴∠BOC=2∠BAC=120∵OB=OC,OF⊥BC∴BF=CF=BC/2,∠BOF=∠COF=∠BOC/2=60∴BF=OB×√3/2=
∠APB=60°,AB²=PA²+PB²-2PA*PBcos60°=PA²+PB²-PA*PB>=2PA*PB-PA*PB=PA*PB当且仅当PA=P
证明:∵△ABC是正三角形,∴AC=BC,∠ACD=∠ACB=60°.∵△CDE是正三角形,∴CD=CE,∠BCE=∠DCE=60°.在△ACD和△BCE中,AC=BC∠ACD=∠BCE=60°CD=
(1)∠BDA=∠BCA=60°(同弧圆周角)因为,∠BAC与∠ABC的角平分线AE,BE相交于点E所以,∠BAE+∠ABE=∠EBC+∠EAC=60°所以,∠BED=∠BAE+∠ABE=60°所以,
正三角形ABC的内切圆与外接圆的面积之比=半径比的平方两半径在同一个直角三角形中,且有一角为30度,比1/2所以正三角形ABC的内切圆与外接圆的面积之比为1/4
如图,ABO为边长6的等边三角形,AC为直径=4根号(3),CF=1/2AC=2根号(3),C(0,2根号(3),B(3,3根号(3))CD-AC垂直,CD:y=根号(3)x+2根号(3),D(-2,
正三角形ABC的边长为6那么高是h=√(6^2-3^2)=3√3所以内切圆半径是r=h/3=√3外接圆半径是R=2h/3=2√3所以它的内切圆是S=πr²=3π外接圆面积是S=πR²
解答提示:如图,设外接圆圆心为O,连接AO并延长交BC于D,连接OB因为三角形ABC是等腰三角形所以AD⊥BC,BD=CD=6根据勾股定理得AD=8设OA=OB=R,则OD=8-R由勾股定理得:BD^
由“正弦定理”得:2R=2/sin60º===>R=2√3/3.